Как преобразовать мгновенную форму записи в комплексную и обратно
В общем случае мгновенная форма записи любой величины выглядит следующим образом:
Эта запись показывает как меняется та или иная величина в зависимости от времени. Вместо синуса может быть косинус, это ничего в дальнейших действиях не меняет.
Обратим внимание, что перед тригонометрической фунцкией всегда записывается амплитудное (то есть максимально возможное значение) величины. При этом в электротехнике в большинстве случаев расчеты ведутся в действующих, а не амплитудных значениях. Если нужны амплитудные, то это указывается в условиях задания.
Проще всего от мгновенной формы сразу перейти к показательной форме записи комплексного числа. Для этого запишем модуль числа, умноженный на «e», в стемени которой указан угол начальной фазы «ф»:
Разумеется, это будет амплитудное значение. Чтобы перевести в действующее достаточно вспомнить, что оно меньше амплитудного в √2 раза, тогда получим:
Рассмотрим пример. Задано мгновенное значение тока цепи:
Необходимо записать в комплексной форме его действующее значение. Как указано выше, запишем:
Как видите, множитель 314 перед переменной времени «t» в преобразованиях не участвует.
Преобразование из показательной формы записи комплексного числа в мгновенную форму производится, используя те же вычисления в обратном порядке. Предположим, задано действующее значение напряжения:
Сначала определим амплитудное значение напряжения, умножив модуль действующего значения на √2:
Записываем мгновенную форму, используя рассчитанную амплитуду и угол начальной фазы, известный из показательной формы записи:
Циклическую частоту цепи ω определить из комплексного числа невозможно, поэтому ее или просто записывают греческой буквой «омега» или определяют из дополнительных условий — например, из указанной частоты цепи.
Итак, простой алгоритм перевода мгновенной формы записи величины в показательную форму комплексного числа:
И последнее — вы наверняка обратили внимание, что мы переводим в показательную форму записи. Что же делать, если надо переводить в алгебраическую? Все очень просто — сначала переводим в показательную, а потом уже из нее, по формуле Эйлера, в алгебраическую. Об этом подробно мы уже писали:
Всё о напряжении
Напряжение — разность потенциалов между двумя точками пространства. Измеряется в вольтах. Так напряжение между плюсовым и минусовым контактом батарейки составляет 1,5 вольта, а между поверхностью земли и грозовым облаком — миллионы вольт!
Всем известно, что в нашей розетке напряжение переменного тока составляет 220 — 230 вольт. А вот, в трёхфазной розетке — 380 вольт. Разница заключается в том, что в первом случае мы получаем фазное, а во втором — линейное напряжение. Так что же такое линейное напряжение и что такое фазное напряжение , и каково соотношение между ними? И по какой причине соотношения именно таковы.
Как в квартиру, так и на предприятие электроэнергия передаётся от генерирующих электростанций по высоковольтным линиям электропередач (в нашей стране — частотой 50 Гц). На трансформаторных подстанциях высокое напряжение понижается, и распределяется по потребителям . Но если у вас в квартире сеть однофазная (надо заметить, что в последнее время у бытовых потребителей имеется возможность подключения к трёхфазной сети), то на производстве — трехфазная, давайте разберёмся, в чём же разница.
Действующее значение и амплитудное значение напряжения
Говоря — 220 или 380 вольт, мы имеем ввиду действующие значения напряжений, другими словами — среднеквадратичные значения напряжений. Фактически амплитудное значение переменного напряжения всегда выше фазного Umф или линейного Umл. Для синусоидального напряжения его амплитуда больше действующего значения в квадратный корень из 2 раз,(1,414 раза).
Отсюда выходит, что фазное напряжение в 220 соответствует амплитудному — 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. Разумеется, на практике напряжение в розетке часто не соответствует именно 220 вольтам, оно может быть больше или меньше этой величины, но должно укладываться в допустимые параметры.
Что такое фазное напряжение в сети переменного тока?
На электростанции обмотки генератора соединены по схеме «звезда», то есть объединены концами X, Y и Z в одной точке, которая называется нейтралью или нулевой точкой генератора. Такая схема называется четырехпроводной трехфазной схемой. К выводам обмоток A, B и C присоединяются линейные провода, а к нулевой точке — нейтральный или нулевой провод.
Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.
Линейное напряжение трехфазной сети
Действующее напряжение между выводом A и B, между выводом B и C, между выводом C и A, — называются линейными напряжениями, то есть это напряжения между линейными проводами трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.
Линейное напряжение в наших электросетях составляет приблизительно 380 вольт. Соотношение фазного и линейного напряжения в любой трёхфазной сети с заземлённой нейтралью составляет 1,732 , или квадратный корень из 3. Не смотря на то что фактическое напряжение в сети может изменяться в определённых пределах, в зависимости от загруженности, соотношение между фазным и линейным напряжением остаётся неизменным.
Параметры переменного напряжения
Как вы помните из предыдущей статьи, переменное напряжение – это напряжение, которое меняется со временем. Оно может меняться с каким-то периодом, а может быть хаотичным. Но не стоит также забывать, что и переменное напряжение обладает своими особенными параметрами.
Среднее значение напряжения
Среднее значение переменного напряжения Uср – это, грубо говоря, площадь под осциллограммой относительно нуля за какой-то промежуток времени. Чтобы это понять, давайте рассмотрим вот такую осциллограмму.
Например,чему равняется среднее значение напряжения за эти два полупериода? В данном случае ноль вольт. Почему так? Площади S1 и S2 равны. Но все дело в том, что площадь S2 берется со знаком “минус”. А так как площади равны, то в сумме они дают ноль: S1+(-S2)=S1-S2=0. Для бесконечного по времени синусоидального сигнала среднее значение напряжения также равняется нулю.
То же самое касается и других сигналов, например, двухполярного меандра. Меандр – это прямоугольный сигнал, у которого длительности паузы и импульса равны. В этом случае его среднее напряжение также будет равняться нулю.
меандр
Средневыпрямленное значение напряжения
Чаще всего используют средневыпрямленное значение напряжения Uср. выпр. То есть площадь сигнала, которая “пробивает пол” берут не с отрицательным знаком, а с положительным.
средневыпрямленное значение напряжения будет уже равняться не нулю, а S1+S2=2S1=2S2. Здесь мы суммируем площади, независимо от того, с каким они знаком.
На практике средневыпрямленное значение напряжения получить легко, использовав диодный мост. После выпрямления синусоидального сигнала, график будет выглядеть вот так:
выпрямленное переменное напряжение после диодного моста
Для того, чтобы примерно узнать, чему равняется средневыпрямленное напряжение, достаточно узнать максимальную амплитуду синусоидального сигнала Umax и сосчитать ее по формуле:
Среднеквадратичное значение напряжения
Чаще всего используют среднеквадратичное значение напряжения или его еще по-другому называют действующим. В литературе обозначается просто буквой U. Чтобы его вычислить, тут уже простым графиком не отделаешься. Среднеквадратичное значение – это значение постоянного напряжения, который, проходя через нагрузку (скажем, лампу накаливания), выделяет за тот же промежуток времени такое же количество мощности, какое выделит в этой нагрузке переменное напряжение. В английском языке среднеквадратичное напряжение обозначается так: RMS (rms) – root mean square.
Связь между амплитудным и среднеквадратическим значением устанавливается через коэффициент амплитуды Ka:
Вот некоторые значения коэффициента амплитуды Ka для некоторых сигналов переменного напряжения:
Более точные значения 1,41 и 1,73 – это √2 и √3 соответственно.
Как измерить среднеквадратичное значение напряжения
Для правильного замера среднеквадратического значения напряжения у нас должен быть мультиметр с логотипом T-RMS. RMS – как вы уже знаете – это среднеквадратическое значение. А что за буква “T” впереди? Думаю, вы помните, как раньше была мода на одно словечко: “тру”. “Она вся такая тру…”, “Ты тру или не тру?” и тд. Тру (true) – с англ. правильный, верный.
Так вот, T-RMS расшифровывается как True RMS – “правильное среднеквадратическое значение”. Мои токоизмерительные клещи могут замерять этот параметр без труда, так как на них есть логотип “T-RMS”.
мультиметр с True RMS
Проведем небольшой опыт. Давайте соберем вот такую схемку:
Выставим на моем китайском генераторе частоты треугольный сигнал с частотой, ну скажем, 100 Герц
А вот осциллограмма этого сигнала. Внизу, в красной рамке, можно посмотреть его параметры
И теперь вопрос: чему будет равно среднеквадратическое напряжение этого сигнала?
Так как один квадратик у нас равняется 1 Вольт (мы это видим внизу осциллограммы в красной рамке), то получается, что амплитуда Umax этого треугольного сигнала равняется 4 Вольта. Для того, чтобы рассчитать среднеквадратическое напряжение, мы воспользуемся формулой:
Итак, смотрим нашу табличку и находим интересующий нас сигнал:
Для нас не важно, пробивает ли сигнал “пол” или нет, главное, чтобы сохранялась форма сигнала. Видим, что наш коэффициент амплитуды Ka= 1,73.
Подставляем его в формулу и вычисляем среднеквадратическое значение нашего треугольного сигнала
Проверяем нашим прибором, так ли оно на самом деле?
Супер! И в правду Тrue RMS.
Замеряем это же самое напряжение с помощью моего китайского мультиметра
Он меня обманул :-(. Он умеет измерять только среднеквадратическое значение синусоидального сигнала, а у нас сигнал треугольный.
Самый интересный сигнал в плане расчетов – это двуполярный меандр, ну тот есть тот, который “пробивает пол”.
Его амплитудное Umax, средневыпрямленное Uср.выпр. и среднеквадратичное напряжение U равняется одному и тому же значению. В данном случае это 1 Вольт.
Вот вам небольшая картинка, чтобы не путаться
среднее, среднеквадратичное и пиковое значения напряжения
- Сред. – средневыпрямленное значение сигнала. Это и есть площадь под кривой
- СКЗ – среднеквадратичное напряжение. Как мы видим, для синусоидальных сигналов, оно будет больше, чем средневыпрямленное.
- Пик. – амплитудное значение сигнала
- Пик-пик. – размах или двойная амплитаду. Или иначе, амплитуда от пика до пика.
Так что же все-таки показывает мультиметр при измерении переменного напряжения? Показывает он НЕ амплитудное, НЕ среднее и НЕ среднее выпрямленное напряжение, а среднее квадратическое, то есть действующее напряжение! Об этом всегда помним.