Перевод числа в матрицу

С помощью калькулятора матриц вы сможете выполнять различные преобразования матриц, решать СЛАУ, а также находить некоторые характеристики, как, например, определитель, след и ранг. Подробнее о функционале и использовании калькулятора смотрите после блока с самим калькулятором.

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: a T ij = aji

Содержание

Как пользоваться калькулятором матриц

Ввод данных и функционал

Что умеет наш калькулятор матриц?

Вычисление выражений с матрицами

Вы можете вычислять различные арифметические выражения с матрицами, а также с результатами некоторых преобразований этих матриц.

Из чего могут состоять выражения?

Примеры корректных выражений

Что такое матрица?

Примеры матриц

Элементы матрицы

Некоторые теоретические сведения

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: a T ij = aji

Главная диагональ квадратной матрицы — диагональ, которая проходит через верхний левый и нижний правый углы. Элементы главной диагонали — aii

Единичная матрица En×n — квадратная матрица из n столбцов и n строк с единицами на главной диагонали и нулями вне её.

Ранг — это максимальное количество линейно независимых строк (столбцов) этой матрицы. Обозначение: rank(A)

След — это сумма элементов, находящихся на её главной диагонали. Обозначение: tr(A) или track(A)

Умножение матрицы на число — матрица такой же размерности, что и исходная, каждый элемент которой является произведением соответствующего элемента исходной матрицы на заданное число.

Возведение в степень — умножение заданной матрицы саму на себя n-ое количество раз, где n – степень, в которую необходимо возвести исходную матрицу. Обозначение: A n

Треугольная матрица — квадратная матрица, у которой выше (верхнетреугольная матрица) или ниже (нижнетреугольная матрица) главной диагонали находятся нули.

LU-разложение — представление матрицы в виде произведения двух матриц L и U, где L — нижнетреугольная матрица с еденичной диагональю, а U — верхнетреугольная матрица. A = L·U

Сложение матриц An×m и Bn×m — матрица Cn×m, получаемая попарной суммой соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij+bij

Разность матриц An×m и Bn×m — матрица Cn×m, получаемая попарной разностью соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij-bij

Источник

Матричный калькулятор онлайн

Предупреждение

Инструкция матричного онлайн калькулятора

Кнопка в верхем левом углу матрицы открывает меню (Рис.1) для преобразования исходной матрицы (создание единичной матрицы , нулевой матрицы , очищать содержимое ячеек ) и т.д.

При вычислениях пустая ячейка воспринимается как нуль.

Кнопки Fn1, Fn2 и Fn3 переключают разные группы функциий.

Нажимая на вычисленных матрицах открывается меню (Рис.2), что позволяет записать данную матрицу в исходные матрицы и , а также преобразовать на месте элементы матрицы в обыкновенную дробь, смешанную дробь или в десятичное число.

Вычисление суммы, разности, произведения матриц онлайн

Матричным онлайн калькулятором можно вычислить сумму, разность или произведение матриц. Для вычисления суммы или разности матриц, необходимо, чтобы они были одинаковой размерности, а для вычисления произведения матриц, количество столбцов первой матрицы должен быть равным количеству строк второй матрицы.

Для вычисления суммы, разности или произведения матриц:

Вычисление обратной матрицы онлайн

Матричным онлайн калькулятором можно вычислить обратную матрицу. Для того, чтобы существовала обратная матрица, исходная матрица должна быть невырожденной квадратной матрицей.

Для вычисления обратной матрицы:

Для подробного вычисления обратной матрицы по шагам, пользуйтесь этим калькулятором для вычисления обратной матрицы. Теорию вычисления обратной матрицы смотрите здесь.

Вычисление определителя матрицы онлайн

Матричным онлайн калькулятором можно вычислить определитель матрицы. Для того, чтобы существовал определитель матрицы, исходная матрица должна быть невырожденной квадратной матрицей.

Для вычисления определителя матрицы:

Для подробного вычисления определителя матрицы по шагам, пользуйтесь этим калькулятором для вычисления определителя матрицы. Теорию вычисления определителя матрицы смотрите здесь.

Вычисление ранга матрицы онлайн

Матричным онлайн калькулятором можно вычислить ранг матрицы.

Для вычисления ранга матрицы:

Для подробного вычисления ранга матрицы по шагам, пользуйтесь этим калькулятором для вычисления ранга матрицы. Теорию вычисления ранга матрицы смотрите здесь.

Вычисление псевдообратной матрицы онлайн

Матричным онлайн калькулятором можно вычислить псевдообратную матрицу. Псевдообратная к данной матрице всегда существует.

Для вычисления псевдообратной матрицы:

Удаление линейно зависимых строк или столбцов матрицы онлайн

Матричным онлайн калькулятор позволяет удалить из матрицы линейно зависимые строки или столбцы, т.е. создать матрицу полного ранга.

Для удаления линейно зависимых строк или столбцов матрицы:

Скелетное разложение матрицы онлайн

Для проведения скелетного разложения матрицы онлайн

Решение матричного уравнения или системы линейных уравнений AX=B онлайн

Для решения матричного уравнения:

Исключение Гаусса или приведение матрицы к треугольному (ступенчатому) виду онлайн

Матричный онлайн калькулятор проводит исключение Гаусса как для квадратных матриц, так и прямоугольных матриц любого ранга. Сначала проводится обычный метод Гаусса. Если на каком то этапе ведущий элемент равен нулю, то выбирается другой вариант исключения Гаусса с выбором наибольшего ведущего элемента в столбце.

Для исключения Гаусса или приведения матрицы к треугольному виду

LU-разложение или LUP-разложение матрицы онлайн

Построение ядра (нуль-пространства) матрицы онлайн

С помощью матричного калькулятора можно построить нуль-пространство (ядро) матрицы.

Для построения нуль-пространства (ядра) матрицы:

Ортогонализация Грамма-Шмидта и Ортонормализация Грамма-Шмидта онлайн

С помощью матричного калькулятора можно сделать ортогонализацию и ортонормализацию Грамма-Шмидта матрицы онлайн.

Для ортогонализации или ортонормализации матрицы:

Источник

Примеры решения матриц с ответами

Простое объяснение принципов решения матриц и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения матриц

Матрица – это математическая таблица с числовыми значениями. Обозначаются матрицы латинскими буквами.

Есть два отличия между матрицами:

С матрицей можно выполнять самые наипростейшие действия: умножение, деление, сложение, вычитание и трансформация.

Сложение и вычитание

Внимание!

Если вам нужна помощь с академической работой, то рекомендуем обратиться к профессионалам. Более 70 000 экспертов готовы помочь вам прямо сейчас.

Данные действия можно совершать тогда, когда матрицы равны между собой, чтобы в конце получилось выражение аналогичной размерности. Сложение и вычитание выполняются по аналогии друг друга.

Задание

Даны две матрицы, найдите их сумму.

Решение

Элемент первой строки складывается с элементом второй. Абсолютно также совершается вычитание, только вместо плюса, нужно поставить минус.

Задание

Даны две матрицы, найдите их разность.

Решение

Задание

Найдите C=2A +3B, если :

Решение

Умножение

В математике умножать таблицу с числами можно абсолютно любую. В таком случае число умножается с показателем. Умножаем первое число на первой строке с числом второго столбца и так далее.

Задание

Даны две матрицы. Умножьте их друг на друга.

Решение

Матрицы можно перемножать друг на друга, только если количество столбцов в первой матрице, равно количеству строк второй. Элемент матрицы будет равняться сумме произведений (Aji), где i – строки в таблице; j – строки чисел второй таблицы.

Возведение матрицы в степень

Данную формулу используют лишь в случаях, если матрица стоит в квадратном выражении. Важно знать, что степень должна быть у таких выражений натуральной!

Если число не будет натуральным, то это усложняет возведение матрицы в степень, так как степень n придётся умножить саму на себя n количество раз. Но если у Вас такой случай, то используется следующая формула.

Задание

Решение

В первую очередь найдём, для этого нужно будет просто умножить её саму на себя.

После по формуле подставляем числовые значения.

Расчёт определителя

В математике линейной есть два понятия – определитель и детерминант. Определитель – это какое-либо число, которое ставится в соответствии с квадратной матрицей. Определитель используется при решении многих задач. Найти его можно с помощью формулы.

А детерминант находиться с помощью перемножения простых матриц, используются числа только с побочной и главной диагоналях.

Есть вероятность, что произведения матрицы будут значительно отличаться друг от друга. Если индекс чётный, то число будет со знаком плюс, если нечётный, то число будет со знаком минус. Обозначается определитель det А, а круглые скобки меняются на квадратные.

Если вы не уверены, что справитесь с работой самостоятельно, обратитесь к профессионалам. Сдадим работу раньше срока или вернем 100% денег

Дано

Решение

Пользуемся свойствам степеней – A^<3>=A^<2>*A

Далее используем свойство степеней

Ответ

Задание

Найдите определитель матрицы А.

Решение

Обратная матрица

Перед тем, как речь непосредственно пойдёт о самой обратной связи матрицы, давайте разберём алгоритм трансформирования матрицы. Во время трансформации столбцы и строки меняются местами.

Задание

Найти обратную матрицу А.

Решение

Приписываем к матрице А матрицу третьего ряда.

Переводим всё в единичную матрицу.

Ответ

Обратная матрица

Обратная матрица схожа с алгоритмом нахождения обратных чисел. К примеру, если умножить матричную таблицу на обратную матрицу, то в итоге мы получаем A*A(-1)=E. Но чтобы перейти уже к нахождению обратной матрицы, нам придётся найти её определитель. Мы рассмотрим самый простой способ – алгебраических дополнений.

Задание

В пример возьмём квадратную матрицу, она находиться с помощью следующей формулы:

-транспортированные матрицы;|А| – определитель.

Рассмотрим самый простейший пример, где размер таблицы 2*2.

Найти обратную матрицу

Решение

Для начала находим определитель матрицы.

Подставляем числа, возвращаясь к матрица, которая указана выше.

Когда нет времени!

Помощь в написании работы от 1 дня. Гарантируем сдачу работу к сроку без плагиата, только авторский текст. Оформление + сопровождеие в подарок!

Всегда начинаем с левого верхнего угла и делаем следующее:

← линиями показано, что нужно и как зачеркнуть.

Как итог, у нас остаётся число 4

Теперь мы переходим к нахождению алгебраических дополнений.

Первым делом нужно поменять знаки у двух чисел в мироне.

← подчёркнуты те числа, у которых мы будем менять знаки.

, вот что у нас получилось.

И наконец-то мы переходим к завершающему этапу, к нахождению транспортированной матрице.

, вспоминаем формулу нахождения, и подставляем числовые значения

В завершении желательно проверить правильно ли мы нашли числовую таблицу. Это делать не обязательно, но рекомендуется, чтобы удостовериться в том, то ответ верный.

Задание

Решение

Начинаем с определения матрицы.

Дело осталось за малым – осталось начти алгебраическое дополнение матрицы А:

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Uchenik.top - научные работы и подготовка
0 0 голоса
Article Rating
Подписаться
Уведомить о
guest
0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии