Как перевести из двоичного кода в десятичный.
Вся цифровая электроника построена на двоичном исчислении, конечно, в основном так как есть уже другие системы, но мы начнем с простого.
Начнем с того, что в математике есть понятия число и цифра.
Либое число состоит из цифр, а вот цифра это знак, который используется для записи числа. Так в десятичной системе — десять знаков, то есть десять цифр: 0 1 2 3 4 5 6 7 8 9, с помощью них можно описать любое десятичное число: 11, 123, 45612165843, 0000000001 и много много других.
В пятеричной системе используется 5 цифр: 0 1 2 3 4,
Аналогично и для других систем. Так в двоичной системе, у нас всего две цифры: 0 и 1. Но тут стоит отметить, что информативность одной цифры в разных системах исчисления разная.
Так например число 15 в десятичной системе будет использовать две цифры 1 и 5. В шестнадцатиричной системе это будет одна цифра — F, да да именно цифра. В двоичной системе это будет 4 цифры : 1111.
Таким образом чем больше цифр в общем ряду системы, тем больше информативность несет в себе отдельная цифра. Это связано с тем, что она реже встречается относительно тех цифр, которых мало в системе. Аналогично и с алфавитом, чем больше букв в алфавите (или азбуке по-русски) тем больше информативность каждой буквы, тем больше слов можно собрать, тем богаче язык.
Вспомним еще одно важное слово — это разряд.
разряд — это положение цифры в числе и соответственно «вклад» в общее значение числа. Разряды нумеруются с ноля и до бесконечности натуральными числами. 0 1 2 и так далее. В числе младший разряд стоит справа, а старший добавляется слева. 005 и 010 второе число больше, так как старший разряд (первый -1 у числа 010 больше чем первый — 0 у числа 005, как мы помним нумерация начинается с нулевого)
А теперь переходим к самому главному: переводу числа из одной системы исчисления к другой.
Основной системой исчисления для человека является десятичная система, так как он с детства приучается к счету через 10 пальчиков на руках.
Поэтому всё в итоге сводится к счету в десятичной системе.
После того как понятна идея с разрядам и системами исчисления, напишем несколько чисел в двоичном коде 0001, 0110, 0111, 00011111 теперь для перевода в десятичный код, нужно просто умножить цифру на 2 в степени равной разряду,
Самое интересное, что для троичной или пятиричной системы все будет также. Даже для десятичной.
Для разминки, попробуйте самостоятельно перевести числа:
1. Простое задание 001, 010, 110
2. Среднее задание 00100, 01010, 10110
3. Сложное задание 11001101, 11100110, 111101110
Если Вам понравилась публикация, подписывайтесь на канал, за Ваши лайки чаще показывают Наши публикации.
Для поиска публикаций через поисковые системы, просто вводите слово Вивитроника.
Перевод чисел из одной системы счисления в другую
Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.
Система счисления — это способ представления числа. Одно и то же число может быть представлено в различных видах. Например, число 200 в привычной нам десятичной системе может иметь вид 11001000 в двоичной системе, 310 в восьмеричной и C8 в шестнадцатеричной.
Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.
Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816
Кратко об основных системах счисления
Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.
Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.
Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.
Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 — красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.
Перевод в десятичную систему счисления
Преобразовать число из любой системы счисления в десятичную можно следующим образом: каждый разряд числа необходимо умножить на X n , где X — основание исходного числа, n — номер разряда. Затем суммировать полученные значения.
Перевод из десятичной системы счисления в другие
Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.
Переведем число 37510 в восьмеричную систему:
Перевод из двоичной системы в восьмеричную
Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2 n , где n — номер разряда.
Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:
Перевод из двоичной системы в шестнадцатеричную
Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2 n , где n — номер разряда, и сложим результаты.
Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Перевод из восьмеричной системы в двоичную
Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.
Используем таблицу триад:
Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.
Перевод из шестнадцатеричной системы в двоичную
Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.
Используем таблицу тетрад:
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.
Перевод из восьмеричной системы в шестнадцатеричную и наоборот
Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.
Двоичный код.
Двоичный код — это подача информации путем сочетания символов 0 или 1. Порою бывает очень сложно понять принцип кодирования информации в виде этих двух чисел, однако мы постараемся все подробно разъяснить.
Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.
Видя что-то впервые, мы зачастую задаемся логичным вопросом о том, как это работает. Любая новая информация воспринимается нами, как что-то сложное или созданное исключительно для разглядываний издали, однако для людей, желающих узнать подробнее о двоичном коде, открывается незамысловатая истина – бинарный код вовсе не сложный для понимания, как нам кажется. К примеру, английская буква T в двоичной системе приобретет такой вид – 01010100, E – 01000101 и буква X – 01011000. Исходя из этого, понимаем, что английское слово TEXT в виде двоичного кода будет выглядеть таким вот образом: 01010100 01000101 01011000 01010100. Компьютер понимает именно такое изложение символов для данного слова, ну а мы предпочитаем видеть его в изложении букв алфавита.
На сегодняшний день двоичный код активно используется в программировании, поскольку работают вычислительные машины именно благодаря ему. Но программирование не свелось до бесконечного набора нулей и единиц. Поскольку это достаточно трудоемкий процесс, были приняты меры для упрощения понимания между компьютером и человеком. Решением проблемы послужило создание языков программирования (бейсик, си++ и т.п.). В итоге программист пишет программу на языке, который он понимает, а потом программа-компилятор переводит все в машинный код, запуская работу компьютера.
Перевод натурального числа десятичной системы счисления в двоичную систему.
Чтобы перевести числа из десятичной системы счисления в двоичную пользуются «алгоритмом замещения», состоящим из такой последовательности действий:
1. Выбираем нужное число и делим его на 2. Если результат деления получился с остатком, то число двоичного кода будет 1, если остатка нет – 0.
2. Откидывая остаток, если он есть, снова делим число, полученное в результате первого деления, на 2. Устанавливаем число двоичной системы в зависимости от наличия остатка.
3. Продолжаем делить, вычисляя число двоичной системы из остатка, до тех пор, пока не дойдем до числа, которое делить нельзя – 0.
4. В этот момент считается, что двоичный код готов.
Для примера переведем в двоичную систему число 7:
1. 7 : 2 = 3.5. Поскольку остаток есть, записываем первым числом двоичного кода 1.
2. 3 : 2 = 1.5. Повторяем процедуру с выбором числа кода между 1 и 0 в зависимости от остатка.
3. 1 : 2 = 0.5. Снова выбираем 1 по тому же принципу.
4. В результате получаем, переведенный из десятичной системы счисления в двоичную, код – 111.
Таким образом можно переводить бесконечное множество чисел. Теперь попробуем сделать наоборот – перевести число из двоичной в десятичную.
Перевод числа двоичной системы в десятичную.
Для этого нам нужно пронумеровать наше двоичное число 111 с конца, начиная нулем. Для 111 это 1^2 1^1 1^0. Исходя из этого, номер для числа послужит его степенем. Далее выполняем действия по формуле: (x * 2^y) + (x * 2^y) + (x * 2^y), где x – порядковое число двоичного кода, а y – степень этого числа. Подставляем наше двоичное число под эту формулу и считаем результат. Получаем: (1 * 2^2) + (1 * 2^1) + (1 * 2^0) = 4 + 2 + 1 = 7.
Немного из истории двоичной системы счисления.
Принято считать, что впервые двоичную систему предложил Готфрид Вильгельм Лейбниц, который считал систему полезной в сложных математических вычислениях и науке. Но по неким данным, до его предложения о двоичной системе счисления, в Китае появилась настенная надпись, которая расшифровывалась при использовании двоичного кода. На надписи были изображены длинные и короткие палочки. Предполагая, что длинная это 1, а короткая палочка — 0, есть доля вероятности, что в Китае идея двоичного кода существовала многим ранее его официального открытия. Расшифровка кода определила там только простое натуральное число, однако это факт, который им и остается.