1.Перевод комплексного числа из одной формы в другую. Как показано выше, комплексное число можно записать в одной из трех форм:



А) Перевод из алгебраической формы в тригонометрическую и показательную
Построить вектор – геометрическое изображение комплексного числа.
Отметить на чертеже острый угол от вектора до ближайшей к нему части оси Ox и угол – от положительной части оси Ox до вектора.
Вычислить модуль 
Вычислить 
По найденному значению и чертежу определить аргумент .
Подставить найденные значения модуля и аргумента в запись тригонометрической и показательной форм.
Пример. Записать в тригонометрической и показательной формах комплексное число 
На чертеже построен вектор и отмечены углы и .
М


Из чертежа видно, что = 180 – = 150. Поэтому 
б) Перевод комплексного числа из тригонометрической формы в алгебраическую
Вычислить синус и косинус.
Раскрыть скобки.Пример.Записать комплексное число 
Р 
в) Перевод комплексного числа из тригонометрической формы в показательную и наоборот. В обеих формах комплексное число определяется модулем и аргументом. Поэтому алгоритм перевода состоит из одного действия:
Переписать в нужной форме.Пример.Записать комплексное число 
Решение.Из записи числа видно, что его модуль r = 5 и аргумент = 200. Поэтому тригонометрическая форма числа имеет вид
г) Перевод из комплексного числа показательной формы в алгебраическую.
Выше описан перевод комплексного числа из показательной формы в тригонометрическую и из тригонометрической в алгебраическую. Поэтому алгоритм имеет вид:1.Выполнить требуемый перевод через тригонометрическую форму.
2. Раскрытие неопределенности. При вычислении некоторых пределов возникает ситуация, которую называют неопределённостью. Например, если f(n) 













Неопределенность типа 



1. Под числовой последовательностью 







2. Формула корней квадратного уравнения с отрицательным дискриминантом.
Как преобразовать комплексное число из алгебраической формы в экспоненциальную форму и наоборот. Приведите пример
С алгебраической формой комплексного числа мы уже познакомились, 
Любое комплексное число (кроме нуля) 



Изобразим на комплексной плоскости число 
Модулем комплексного числа 
Модуль комплексного числа 

По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: 
Пример 17.7 Пусть 

Решение. Находим модуль и аргумент числа:
Следовательно, показательная форма комплексного числа такова:
Пример 17.8 Комплексное число записано в показательной форме
Найдите его алгебраическую форму.
Решение. По формуле Эйлера
Итак, алгебраическая форма числа: 
Распечатайте эти вопросы и запишите присланный регистрационный номер в левый верхний угол титульного листа.
Защищать работу можно у любого преподавателя кафедры «Высшая математика».
Расписание консультаций расположено в 7 корпусе рядом с аудиторией 7-310.
Калькулятор комплексных чисел. Вычисление выражений с комплексными числами
Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.
Калькулятор комплексных чисел
Как пользоваться калькулятором
- Введите в поле ввода выражение с комплексными числами
- Укажите, требуется ли вывод решения переключателем «С решением»
- Нажмите на кнопку «Построить»
Ввод комплексных чисел
комплексные числа можно вводить в следующих трёх форматах:
- Только действительная часть: 2, 2.5, -6.7, 12.25
- Только мнимая часть: i, -i, 2i, -5i, 2.16i, -12.5i
- Действительная и мнимая части: 2+i, -5+15i, -7+2.5i, -6+i
- Математические константы: π, e
Поддерживаемые операции и математические функции
- Арифметические операции: +, -, *, /, ^
- Получение абсолютного значения числа: abs
- Базовые математические функции: exp, ln, sqrt
- Получение действительной и мнимой частей: re, im
- Тригонометрические функции: sin, cos, tg, ctg
- Гиперболические функции: sh, ch, th, cth
- Обратные тригонометрические функции: arcsin, arccos, arctg, arcctg
- Обратные гиперболические функции: arsh, arch, arth, arcth
Примеры корректных выражений
Комплексные числа
Комплексные числа — это числа вида x+iy , где x , y — вещественные числа, а i — мнимая единица (специальное число, квадрат которого равен -1, то есть i 2 = -1 ).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.
Примеры комплексных чисел
- 4+3i — действительная часть = 4, мнимая = 3
- -2+i — действительная часть = -2, мнимая = 1
- i — действительная часть = 0, мнимая = 1
- -i — действительная часть = 0, мнимая = -1
- 10 — действительная часть = 10, мнимая = 0
Основные действия с комплексными числами
Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:
- сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
- вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
- умножение: (a + bi) · (c + di) = ac + bci + adi + bdi 2 = (ac — bd) + (bc + ad)i
- деление:
Примеры
Найти сумму чисел 5+7i и 5.5-2i :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: 5+7i + 5.5-2i = 10.5 + 5i
Найти разность чисел 12-i и -2i :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: 12-i — (-2i) = 12 + i
Найти произведение чисел 2+3i и 5-7i :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: 2+3i * (5-7i) = 31 + i
Найти отношение чисел 75-50i и 3+4i :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: 75-50i / (3+4i) = 1 — 18i
Другие действия над комплексными числами
Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:
- Получение действительной части числа: Re(z) = a
- Получение мнимой части числа: Im(z) = b
- Модуль числа: |z| = √(a 2 + b 2 )
- Аргумент числа: arg z = arctg(b / a)
- Экспонента: e z = e a ·cos(b) + i·e a ·sin(b)
- Логарифм: Ln(z) = ln |z| + i·arg(z)
- Тригонометрические функции: sin z, cos z, tg z, ctg z
- Гиперболические функции: sh z, ch z, th z, cth z
- Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
- Обратные гиперболические функции: arsh z, arch z, arth z, arcth z
Примеры
Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(4 2 + (-3) 2 ) = √25 = 5
Формы представления комплексных чисел
Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.
- Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: x+iy , где x — действительная часть, а y — мнимая часть
- Тригонометричкая форма — запись вида r·(cos φ + isin φ) , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
- Показательная форма — запись вида r·e iφ , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))
Пример:
Переведите число 1+i в тригонометрическую и показательную формы:
- Найдём радиус (модуль) комплексного числа r: r = √(1 2 + 1 2 ) = √2
- Найдём аргумент числа: φ = arctan(








