Перевод комплексных чисел в вещественную

Калькулятор комплексных чисел. Вычисление выражений с комплексными числами

Калькулятор комплексных чисел позволяет вычислять арифметические выражения, содержащие комплексные числа, знаки арифметических действий (+, -, *, /, ^), а также некоторые математические функции.

Калькулятор комплексных чисел

Как пользоваться калькулятором

  1. Введите в поле ввода выражение с комплексными числами
  2. Укажите, требуется ли вывод решения переключателем «С решением»
  3. Нажмите на кнопку «Построить»

Ввод комплексных чисел

комплексные числа можно вводить в следующих трёх форматах:

  • Только действительная часть: 2, 2.5, -6.7, 12.25
  • Только мнимая часть: i, -i, 2i, -5i, 2.16i, -12.5i
  • Действительная и мнимая части: 2+i, -5+15i, -7+2.5i, -6+i
  • Математические константы: π, e

Поддерживаемые операции и математические функции

  • Арифметические операции: +, -, *, /, ^
  • Получение абсолютного значения числа: abs
  • Базовые математические функции: exp, ln, sqrt
  • Получение действительной и мнимой частей: re, im
  • Тригонометрические функции: sin, cos, tg, ctg
  • Гиперболические функции: sh, ch, th, cth
  • Обратные тригонометрические функции: arcsin, arccos, arctg, arcctg
  • Обратные гиперболические функции: arsh, arch, arth, arcth

Примеры корректных выражений

Комплексные числа

Комплексные числа — это числа вида x+iy , где x , y — вещественные числа, а i — мнимая единица (специальное число, квадрат которого равен -1, то есть i 2 = -1 ).
Так же, как и для вещественных чисел, для комплексных чисел определены операции сложения, разности, умножения и деления, однако комплексные числа нельзя сравнивать.

Примеры комплексных чисел

  • 4+3i — действительная часть = 4, мнимая = 3
  • -2+i — действительная часть = -2, мнимая = 1
  • i — действительная часть = 0, мнимая = 1
  • -i — действительная часть = 0, мнимая = -1
  • 10 — действительная часть = 10, мнимая = 0

Основные действия с комплексными числами

Основными операциями, определёнными для комплексных чисел, являются сложение, разность, произведение и деление комплексных чисел. Операции для двух произвольных комплексных чисел (a + bi) и (c + di) определяются следующим образом:

  • сложение: (a + bi) + (c + di) = (a + c) + (b + d)i
  • вычитание: (a + bi) — (c + di) = (a — c) + (b — d)i
  • умножение: (a + bi) · (c + di) = ac + bci + adi + bdi 2 = (ac — bd) + (bc + ad)i
  • деление:

Примеры

Найти сумму чисел 5+7i и 5.5-2i :
Найдём отдельно суммы действительных частей и сумму мнимых частей: re = 5 + 5.5 = 10.5, im = 7 — 2 = 5.
Запишем их рядом, добавив к мнимой части i: 10.5 + 5i
Полученное число и будет ответом: 5+7i + 5.5-2i = 10.5 + 5i

Найти разность чисел 12-i и -2i :
Найдём отдельно разности действительных частей и разности мнимых частей: re = 12 — 0 = 12, im = -1 — (-2) = 1.
Запишем их рядом, добавив к мнимой части i: 12 + 1i
Полученное число и будет ответом: 12-i — (-2i) = 12 + i

Найти произведение чисел 2+3i и 5-7i :
Найдём по формуле действительную и мнимую части: re = 2·5 — 3·(-7) = 31, im = 3·5 + 2·(-7) = 1.
Запишем их рядом, добавив к мнимой части i: 31 + 1i
Полученное число и будет ответом: 2+3i * (5-7i) = 31 + i

Найти отношение чисел 75-50i и 3+4i :
Найдём по формуле действительную и мнимую части: re = (75·3 — 50·4) / 25 = 1, im = (-50·3 — 75·4) / 25 = -18.
Запишем их рядом, добавив к мнимой части i: 1 — 18i
Полученное число и будет ответом: 75-50i / (3+4i) = 1 — 18i

Другие действия над комплексными числами

Помимо базовых операций сложения, вычитания, умножения и деления комплексных чисел существуют также различные математические функции. Рассмотрим некоторые из них:

  • Получение действительной части числа: Re(z) = a
  • Получение мнимой части числа: Im(z) = b
  • Модуль числа: |z| = √(a 2 + b 2 )
  • Аргумент числа: arg z = arctg(b / a)
  • Экспонента: e z = e a ·cos(b) + i·e a ·sin(b)
  • Логарифм: Ln(z) = ln |z| + i·arg(z)
  • Тригонометрические функции: sin z, cos z, tg z, ctg z
  • Гиперболические функции: sh z, ch z, th z, cth z
  • Обратные тригонометрические функции: arcsin z, arccos z, arctg z, arcctg z
  • Обратные гиперболические функции: arsh z, arch z, arth z, arcth z

Примеры

Найти действительную и мнимую части числа z, а также его модуль, если z = 4 — 3i
Re(z) = Re(4 — 3i) = 4
Im(z) = Im(4 — 3i) = -3
|z| = √(4 2 + (-3) 2 ) = √25 = 5

Формы представления комплексных чисел

Комплексные числа принято представлять в одной из трёх следующих форм: алгебраической, тригонометрической и показательной.

  • Алгебраическая форма — наиболее часто используемая форма комплексного числа, запись числа в виде суммы действительной и мнимой частей: x+iy , где x — действительная часть, а y — мнимая часть
  • Тригонометричкая форма — запись вида r·(cos φ + isin φ) , где r — модуль комплексного числа (r = |z|), а φ — аргумент этого числа (φ = arg(z))
  • Показательная форма — запись вида r·e iφ , где r — модуль комплексного числа (r = |z|), e — число Эйлера, а φ — аргумент комплексного числа (φ = arg(z))

Пример:

Переведите число 1+i в тригонометрическую и показательную формы:

  • Найдём радиус (модуль) комплексного числа r: r = √(1 2 + 1 2 ) = √2
  • Найдём аргумент числа: φ = arctan(

Источник

Перевод комплексных чисел в вещественную

Понятия комплексные или мнимые числа впервые начали применяться при решении квадратных уравнений. Когда дискриминант получался меньше нуля (D Онлайн калькулятор комплексных чисел

Программа выполняет вычисления c комплексными числами, представленными в алгебраической или показательной форме, а так же рациональными числами.

Сложение и вычитание комплексных чисел необходимо осуществлять в алгебраической форме, если число представлено в иной форме, нужно перевести его в алгебраическую, воспользовавшись калькулятором, или же вручную по формулам ниже:

Умножение и деление комплексных чисел возможно реализовать как в алгебраической, так и в показательной формах. Но намного практичней осуществлять действие в показательной форме, этот способ займет намного меньше времени при расчете, например, токов короткого замыкания.

Сложение сопряженных чисел:

При делении комплексных чисел в алгебраической форме необходимо избавиться от мнимой составляющей в знаменателе. Для этого числитель и знаменатель домножают на число, сопряженное знаменателю.

Перевод чисел из алгебраической формы в показательную и наоборот возможно осуществить с помощью калькулятора для комплексных чисел, который Вы можете скачать по ссылке. Кстати, именно этим калькулятором я пользовался при расчете комплексных чисел ТОЭ, когда учился в университете. Пользоваться им крайне просто. Для перевода в разные формы используется установка нужного «флажка».

Если на руках имеется реальный калькулятор, который Вы купили в канцелярском магазине, и он обладает возможностью расчета комплексных чисел, то внимаем. Сейчас расскажу как им пользоваться.

1. Чтоб перевести комплексное число 5+3i из алгебраической формы в показательную, нажимаем клавиши в следующей последовательности:

Источник

Комплексные числа

В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ \mathbb $.

Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = \sqrt <-1>$, числа $ a,b \in \mathbb $ вещественные.

Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ \mathbb \subset \mathbb $. К слову говоря также возможно, что $ a = 0 $.

Принято записывать мнимую часть комплексного числа как $ Im(z) = b $, а действительную $ Re(z) = a $.

Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ \overline = a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

  1. Алгебраическая $ z = a+ib $
  2. Показательная $ z = |z|e^ $
  3. Тригонометрическая $ z = |z|\cdot(\cos(\varphi)+i\sin(\varphi)) $

Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.

Изображение

Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:

Видим, что $ a,b \in \mathbb $ расположены на соответствующих осях плоскости.

Комплексное число $ z = a+ib $ представляется в виде вектора $ \overline $.

Аргумент обозначается $ \varphi $.

Модуль $ |z| $ равняется длине вектора $ \overline $ и находится по формуле $ |z| = \sqrt $

Аргумент комплексного числа $ \varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.

Вычислить сумму и разность заданных комплексных чисел:

Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:

$$ z_1 + z_2 = (3+i) + (5-2i) = (3+5)+(i-2i) = 8 — i $$

Аналогично выполним вычитание чисел:

$$ z_1 — z_2 = (3+i) — (5-2i) = (3-5)+(i+2i) = -2 + 3i $$

Выполнить умножение и деление комплексных чисел:

$$ z_1 \cdot z_2 = (3+i) \cdot (5-2i) = $$

Просто на просто раскроем скобки и произведем приведение подобных слагаемых, так же учтем, что $ i^2 = -1 $:

$$ = 15 — 6i + 5i -2i^2 = 15 — i — 2\cdot(-1) = $$

Так, теперь разделим первое число на второе:

Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:

Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:

Ответ $$ z_1 \cdot z_2 = 17 — i; \frac = \frac<13> <29>+ \frac<11><29>i $$

Для возведения в квадрат достаточно умножить число само на себя:

$$ z^2 = (3+3i)^2 = (3+3i)\cdot (3+3i) = $$

Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:

$$ =9 + 9i + 3i\cdot 3 + 9i^2 = 9 + 18i — 9 = 18i $$

Получили ответ, что $$ z^2 = (3+i)^2 = 18i $$

В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.

Вычисляем значение модуля:

Найдем чем равен аргумент:

$$ \varphi = arctg \frac<3> <3>= arctg(1) = \frac<\pi> <4>$$

Записываем в тригонометрическом виде:

Возводим в степень $ n = 7 $:

Преобразуем в алгебраическую форму для наглядности:

$$ = 3^7 \sqrt<2>^6 (1-i) = 3^7 \cdot 8(1-i) = $$

$$ = 2187 \cdot 8 (1-i) = 17496(1-i) $$

$$ z^2 = (3+i)^2 = 18i $$ $$ z^7 = 17496(1-i) $$

Представим число в тригонометрической форме. Найдем модуль и аргумент:

$$ \varphi = arctg \frac<0> <-1>+\pi = arctg 0 + \pi = \pi $$

Получаем: $$ z = (\cos \pi + i\sin \pi) $$

Используем знакомую формулу Муавра для вычисления корней любой степени:

Так как степень $ n = 3 $, то по формуле $ k = 0,1,2 $:

Пример 4
Возвести комплексное число $ z = 3+3i $ в степень: a) $ n=2 $ б) $ n=7 $
Решение

Решать будем по общей формуле, которую все выучили в 8 классе. Находим дискриминант $$ D = b^2 — 4ac = 2^2 — 4\cdot 1 \cdot 2 = 4-8 = -4 $$

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Uchenik.top - научные работы и подготовка
0 0 голоса
Article Rating
Подписаться
Уведомить о
guest
0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
Пример 6
Решить квадратное уравнение $ x^2 + 2x + 2 = 0 $ над $ \mathbb $
Решение