Vladimirus-team
Перевести косинус в синус и обратно
- Получить ссылку
- Электронная почта
- Другие приложения
Перевести косинус в синус (cos в sin) и обратно
Поделиться в соц сетях:
- Получить ссылку
- Электронная почта
- Другие приложения
Комментарии
Отправка комментария
Популярные сообщения из этого блога
Калькулятор индекса формы тела — ABSI – индекс формы тела
ABSI – индекс формы тела — калькулятор индекса формы тела. Оценка нормальности тела при помощь ИФТ — Индекс формы тела.
ABSI ( A Body Shape Index) — является метрикой для оценки последствий для здоровья лишней массы тела. Включение в расчёт окружности талии делает BSI лучшим показателем риска для здоровья от избыточного веса, чем стандартный индекс массы тела.
ABSI является строгим статистическим индикатором риска преждевременной смерти – каждый шаг повышения индекса ассоциирован с 13% — ым ростом показателя. Среди участников исследований, чей ABSI находился в верхних 20-процентных пределах значений, риск преждевременной смерти оказался на 61% выше, чем у тех, чей индекс был в нижних 20-процентных пределах.
ABSI – индекс формы тела — онлайн калькулятор индекса формы тела. Вес:
A Body Shape Index (Индекс формы тела):
Body mass index (BMI) (Индекс массы тела):
Чем ниже значение ABSI, тем меньше риск для здоровья.
Приведенные ниже данны…
Найти тангенс фи , если известен косинус фи
Калькулятор коэффициент мощности cos fi в tg fi Как найти тангенс фи, если известен косинус фи формула:tg φ = (√(1-cos²φ))/cosφ Калькулятор онлайн — коэффициент мощности перевести cos в tgcos φ:
Поделиться в соц сетях:
Найти синус φ, если известен тангенс φ
Найти косинус φ, если известен тангенс φ
Индекс Руфье калькулятор
Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание доктора Диксона о «Использование сердечного индекса Руфье в медико-спортивном контроле».
Проба Руфье — представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке.
Индекс Руфье для школьников и студентов.У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле: Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменовИзмеряют пульс в положении сидя (Р1);Спортсмен выполняет 30 глубоких приседаний в течение 30 с. После эт…
Инженерный калькулятор онлайн с самыми точными расчетами!
Почему мы так решили? Наш онлайн калькулятор оперирует числами вплоть до 20 знаков после запятой, в отличие от других. Kalkpro.ru способен точно и достоверно совершить любые вычислительные операции, как простые, так и сложные.
Только корректные расчеты по всем правилам математики!
В любой момент и в любом месте под рукой, универсальный инженерный калькулятор онлайн выполнит для вас любую операцию абсолютно бесплатно, практически мгновенно, просто добавьте программу в закладки.
Всё для вашего удобства:
- быстрые вычисления и загрузка,
- верные расчеты по всем правилам,
- полный функционал,
- понятный интерфейс,
- адаптация под любой размер устройства
- бесплатно
- не надо ничего устанавливать,
- никакой всплывающей назойливой рекламы,
- подробная инструкция с примерами
Содержание справки:
Комплекс операций инженерного калькулятора
Встроенный математический калькулятор поможет вам провести самые простые расчеты: умножение и суммирование, вычитание, а также деление. Калькулятор степеней онлайн быстро и точно возведет любое число в выбранную вами степень.
Представленный инженерный калькулятор содержит в себе все возможные вариации онлайн программ для расчетов. Kalkpro.ru содержит тригонометрический калькулятор (углы и радианы, грады), логарифмов (Log), факториалов (n!), расчета корней, синусов и арктангенсов, косинусов, тангенсов онлайн – множество тригонометрический функций и не только.
Работать с вычислительной программой можно онлайн с любого устройства, в каждом случае размер интерфейса будет подстраиваться под ваше устройство, либо вы можете откорректировать его размер на свой вкус.
Ввод цифр производится в двух вариантах:
- с мобильных устройств – ввод с дисплеем телефона или планшета, клавишами интерфейса программы
- с персонального компьютера – с помощью электронного дисплея интерфейса, либо через клавиатуру компьютера любыми цифрами
Инструкция по функциям инженерного калькулятора
Для понимания возможностей программы мы даем вам краткую инструкцию, более подробно смотрите в примерах вычислений онлайн. Принцип работы с научным калькулятором такой: вводится число, с которым будет производиться вычисление, затем нажимается кнопка функции или операции, потом, если требуется, то еще цифра, например, степень, в конце — знак равенства.
- [Inv] – обратная функция для sin, cos, tan, переключает интерфейс на другие функции
- [Ln] – натуральный логарифм по основанию «e»
- [ ( ] и [ ) ] — вводит скобки
- [Int] – отображает целую часть десятичного числа
- [Sinh] — гиперболический синус
- [Sin] – синус заданного угла
- [X 2 ] – возведение в квадрат (формула x^2)
- [n!] — вычисляет факториал введенного значения — произведение n последовательных чисел, начиная с единицы до самого введенного числа, например 4!=1*2*3*4, то есть 24
- [Dms] – переводит из десятичного вида в формат в градусы, минуты, секунды.
- [Cosh] — гиперболический косинус
- [Cos] – косинус угла
- [x y ] – возведение икса в степ. игрик (формула x^y)
- [ y √x] – извлечение корня в степени y из икс
- [Pi] – число Пи, выдает значение Pi для расчетов
- [tanh] — гиперболический тангенс
- [tan] – тангенс угла онлайн, tg
- [X 3 ] — помогает возвести в степень 3, в куб (формула x^3)
- [ 3 √x] — извлечь корень кубический
- [F – E] — переключает ввод чисел в экспоненциальном представлении и обратно
- [Exp] — позволяет вводить данные в экспоненциальном представлении.
- [Mod] — позволяет нам вычислить остаток от деления одного числа на другое
- [Log] – рассчитывает десятичный логарифм
- [10^x] – возведение десяти в произвольную степень
- [1/X] — подсчитывает обратную величину
- [e^x] – Возведение числа Эйлера в степень
- [Frac] – отсекает целую часть, оставляет дробную
- [sinh -1 ] – обратный гиперболический синус
- [sin -1 ] – арксинус или обратный синус, arcsin или 1/sin
- [deg] – перевод угла в градусах, минутах и секундах в десятичные доли градуса, подробнее
- [cosh -1 ] — обратный гиперболический косинус
- [cos -1 ] – аркосинус или обрат. косинус arccos или 1/cos
- [2*Pi] – рассчитывает число Пи, помноженное на два
- [tanh -1 ] – обрат. гиперболический тангенс
- [tan -1 ] – арктангенс или обратный тангенс, arctg
Как пользоваться MR MC M+ M- MS
Как пользоваться инженерным калькулятором – на примерах
Как возвести в степень
Чтобы возвести, к примеру, 12^3 вводите в следующей последовательности:
12 [x y ] 3 [=]
12, клавиша «икс в степени игрик» [xy], 3, знак равенства [=]
Как найти корень кубический
Допустим, что мы извлекаем корень кубический из 729, нажмите в таком порядке:
729 [3√x] [=]
729, [ 3 √x] «кубический корень из икс», равенства [=]
Как найти корень на калькуляторе
Задача: Найти квадратный корень 36.
Решение: всё просто, нажимаем так:
36 [ y √x] 2 [=]
36, [ y √x] «корень из икса, в степени игрик», нужную нам степень 2, равно [=]
При помощи этой функции вы можете найти корень в любой степени, не только квадратный.
Как возвести в квадрат
Для возведения в квадрат онлайн вычислительная программа содержит две функции:
[x y ] «икс в степени игрик», [X 2 ] «икс в квадрате»
Последовательность ввода данных такая же, как и раньше – сначала исходную величину, затем «x^2» и знак равно, либо если не квадрат, а произвольное число, необходимо нажать функцию «x^y», затем указать необходимую степень и так же нажать знак «равно».
Например: 45 [x y ] 6 [=]
Ответ: сорок пять в шестой степ. равно 8303765625
Тригонометрический калькулятор онлайн — примеры
Как произвести онлайн расчет синусов и косинусов, тангенсов
Обратите внимание, что kalkpro.ru способен оперировать как градусами, так радианами и градами.
1 рад = 57,3°; 360° = 2π рад., 1 град = 0,9 градусов или 1 град = 0,015708 радиан.
Для включения того или иного режима измерения нажмите нужную кнопку:
где Deg – градусы, Rad – измерение в радианах, Grad — в градах. По умолчанию включен режим расчета в градусах.
В качестве самого простого примера найдем синус 90 градусов. Нажмите:
90 [sin] [=]
Также рассчитываются и другие тригонометрические функции, например, вычислим косинус 60 °:
60 [cos] [=]
Аналогичным способом вычисляются обратные тригонометрические функции онлайн на КАЛКПРО — арксинус , арккосинус, арктангенс, а также гиперболические функции sinh, cosh, tanh.
Для их ввода необходимо переключить интерфейс, нажав [Inv], появятся новые кнопки – asin, acos, atan. Порядок ввода данных прежний: сначала величину, затем символ нужной функции, будь то акрсинус или арккосинус.
Преобразование с кнопкой Dms и Deg на калькуляторе
[Deg] позволяет перевести угол из формата градусы, минуты и секунды в десятичные доли градуса для вычислений. [Dms] производит обратный перевод – в формат «градусы; минуты; секунды».
Например, угол 35 o 14 минут 04 секунды 53 десятые доли секунды переведем в десятые доли:
35,140453 [Deg] [=] 35,23459166666666666666
Переведем в прежний формат: 35,23459166666666666666 [Dms] [=] 35,140453
Десятичный логарифм онлайн
Десятичный логарифм на калькуляторе рассчитывается следующим образом, например, ищем log единицы по основанию 10, log10(1) или lg1:
1 [log] [=]
Получается 0 в итоге. Для подсчета lg100 нажмем так:
100 [log] [=]
Решение: два. Как себя проверить? Что вообще такое десятичный логарифм — log по основанию 10. В нашем примере 2 – это степень в которую необходимо ввести основание логарифма, то есть 10, чтобы получить 100.
Так же вычисляется натуральный логарифм, но кнопкой [ln].
Как пользоваться памятью на калькуляторе
Существующие кнопки памяти: M+, M-, MR, MS, MC.
Добавить данные в память программы, чтобы потом провести с ними дальнейшие вычисления поможет операция MS.
MR выведет вам на дисплей сохраненную в памяти информацию. MC удалит любые данные из памяти. M- вычтет число на онлайн дисплее из запомненного в памяти.
Пример. Внесем сто сорок пять в память программы:
145 [MR]
После проведения других вычислений нам внезапно понадобилось вернуть запомненное число на экран электронного калькулятора, нажимаем просто:
На экране отобразится снова 145.
Потом мы снова считаем, считаем, а затем решили сложить, к примеру, 85 с запомненным 145, для этого нажимаем [M+], либо [M-] для вычитания 85 из запомненного 145. В первом случае по возвращению итогового числа из памяти кнопкой [MR] получится 230, а во втором, после нажатия [M-] и [MR] получится 60.
Инженерный калькулятор kalkpro.ru быстро и точно проведет сложные вычисления, значительно упрощая ваши задачи.
Перечень калькуляторов и функционал будет расширяться, просто добавьте сайт в закладки и расскажите друзьям!
Синус и косинус. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти синусы и косинусы угла, представленных как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Синус и косинус − теория, примеры и решения
Пусть задана прямоугольная система координат xOy и пусть на ней нарисована окружность радиусом 1 и с центром в начале координат. Рассмотрим единичный вектор лежащий на оси Ox. Положительным направлением поворота вектора относительно центра координат O принята считать поворот против часовой стрелки, а отрицательным направлнением − по часовой стрелке. Пусть некоторый вектор, совпадающий с вектором
, совершивший поворот в положительном направлении совпадает с вектором
(Рис.1).
Точку B назовем точкой, соответствующей углу α. Рассмотрим координаты x, y точки B. Абсцис x точки B называют косинусом угла α и обозначают cosα, а ординат y точки B называют синусом угла α и обозначают sinα. Таким образом
Так как мы рассматриваем окружность с радиусом R=1, то
а любая точка на кружности удовлетворяет следующему равенству:
Подставляя (1) и (2) в (3), получим:
На рисунках Рис.2 и Рис.3 представлены некоторые углы единичной окружности в радианах и в градусах. Как преобразовать градусы в радианы и наоборот посмотрите на странице радианы и градусы онлайн.
Как видно из рисунков, оси OX и OY разделяют плоскость на 4 части. Эти части принято пронуменровать римскими числами I, II, III, IV. Каждая часть называется четвертью. На рисунке Рис.2 в каждой четверти окружность разделена на две части, а в Рис.3 − на три.
Пример 1. Найти синус и косинус угла, равного 45°(или радиан)( Рис.4).
Имеем прямоугольный треугольник OxB. Так как угол BOx=45°, то угол OBx=45°. Следовательно треугольник OBx равнобедренный, т.е.
Подставляя (5) в (3), получим:
То есть (учитывая (1) и (2))
В радианных мерах (6) примет следующий вид:
Пример 2. Найти синус и косинус угла, равного 60°(или радиан)( Рис.5).
Имеем прямоугольный треугольник OxB. Так как угол BOx=60°, то угол OBx=30°. Как известно из геометрии, катет, напротив угла 30° равен половине гипотенузы. Т.е.
Подставляя (8) в (3), получим:
|
|
|
В первой четверти x>0, y>0. Тогда, учитывая (1) и (2), решением будет:
|
|
Пример 3. Найти синус и косинус угла, равного 120°(или радиан)( Рис.6).
Имеем прямоугольный треугольник OxB. Так как угол BOx=120°, то ∠yOB=∠OBx=30°. Как известно из геометрии, катет, напротив угла 30° равен половине гипотенузы. Т.е.
Подставляя (9) в (3), получим:
|
|
|
Во второй четверти x 0. Тогда, учитывая (1) и (2), решением будет:
|
|
С помощью вышеизложенных соображений можно построить таблицу синусов и косинусов некоторых углов.
Рассмотрим свойства синуса и косинуса.
Свойство 1. Для любого числа α справедливы равенства:
Доказательство. Пусть числу α соответствует точка P на окружности (Рис. 7). Тогда числу −α соответствует точка Q, симметричная точке P относительно оси абсцисс. Эти точки имеют одну и ту же абсциссу, следовательно . Такие точки имеют равные по модулю, но противоположные по знаку ординаты. Следовательно
.
Свойство 2. Для любого числа α выполнены равенства (в радианах):
где k∈Z (k любое целое число).
Поскольку числам α и α+2πk в радианах соответствует одна и та же точка на числовой окружности, то справедливы равенства (12) и (13). Так как числам α и α+360k в градусах соответствует одна и та же точка на числовой окружности, то выполнены равенства (14) и (15).
Свойство 3. Для любого значения α выполнены равенства (в радианах):
Например (в радианах):
Доказательство. Пусть числу α соответствует точка P на окружности. Тогда числу α+π (или α+180°) соответствует точка Q, симметричной точке P относительно начала координат (Рис. 8). Абсциссы этих точек равны по модулю но имеют противоположные знаки. Ординаты этих точек равны по модулю и имеют противоположные знаки. А это значит, что выполнены равенства (16),(17),(18),(19).
График функции синус (y=sin x)
Для построения графика функции синус, поставим в соответствие любому числу α, ординату соответствующей точки на единичной окружности (Рис.9).
Пусть точка M движется по окружности в положительном направлении (против часовой стрелки) начиная с точки A. вектор радиус точки M движется по окружности, начиная от точки A.
Вектор радиус точки M с осью OX имеет угол α. Увеличивая этот угол от нуля до π/2 ордината точки M увеличивается от 0 до 1. Далее, увеличивая этот угол от π/2 до π, ордината точки M уменьшается на от 1 до 0. Построим график функции синус на отрезке [0,π]. Так как привычнее запись функции в виде y=sin x, то вместо sin α мы будем использовать sin x, а y− это значение функции соответствующей точке x.
В декартовой прямоугольной системе координат, на оси OX отметим точки (можно взять π≈3 и тогда этим точкам будут соответствовать числа 0, 0.5, 1, 1.5, 2, 2.5, 3). Далее, используя таблицу 1, запишем соответствующие значения y.
Равенство (10) показывает, что функция синус симметрична относительно начала координат (т.е. нечетна). Тогда добавив построенной линии, линию, симметричную относительно начала коордиинат, получим:
Равентство (12)((14)) показывает, что синус периодичная функция с периодом 2π( 360°). Это означает, что функция в диапазоне [−π;π] повторяется начиная с π направо и с −π влево:
График функции косинус (y=cos x)
Для построения графика функции косинус, поставим в соответствие любому числу α, абсциссу соответствующей точки на единичной окружности (Рис.13).
Пусть точка M движется по окружности в положительном направлении (против часовой стрелки) начиная с точки A.
Вектор радиус точки M с осью OX имеет угол α. Увеличивая этот угол от нуля до π/2 абсцисс точки M уменьшается от 1 до 0. Далее, увеличивая этот угол от π/2 до π, абсцисс точки M увеличивается от 0 до 1. Построим график функции косинус на отрезке [0,π]. Так как привычнее запись функции в виде y=cos x, то вместо cos α мы будем использовать cos x, а y− это значение функции соответствующей точке x.
В декартовой прямоугольной системе координат, на оси OX отметим точки (можно взять π≈3 и тогда этим точкам будут соответствовать числа 0, 0.5, 1, 1.5, 2, 2.5, 3). Далее, используя таблицу 1, запишем соответствующие значения y.
Равенство (11) показывает, что функция синус симметрична относительно оси ординат (т.е. четна). Тогда добавив построенной линии, линию, симметричную относительно оси ординат, получим:
Равентство (13)((15)) показывает, что косинус периодичная функция с периодом 2π( 360°). Это означает, что функция в диапазоне [−π;π] повторяется начиная с π направо и с −π влево: