Перевод косинуса в синус калькулятор

Инженерный калькулятор онлайн с самыми точными расчетами!

Почему мы так решили? Наш онлайн калькулятор оперирует числами вплоть до 20 знаков после запятой, в отличие от других. Kalkpro.ru способен точно и достоверно совершить любые вычислительные операции, как простые, так и сложные.

Только корректные расчеты по всем правилам математики!

В любой момент и в любом месте под рукой, универсальный инженерный калькулятор онлайн выполнит для вас любую операцию абсолютно бесплатно, практически мгновенно, просто добавьте программу в закладки.

Всё для вашего удобства:

  • быстрые вычисления и загрузка,
  • верные расчеты по всем правилам,
  • полный функционал,
  • понятный интерфейс,
  • адаптация под любой размер устройства
  • бесплатно
  • не надо ничего устанавливать,
  • никакой всплывающей назойливой рекламы,
  • подробная инструкция с примерами

Содержание справки:

Комплекс операций инженерного калькулятора

Встроенный математический калькулятор поможет вам провести самые простые расчеты: умножение и суммирование, вычитание, а также деление. Калькулятор степеней онлайн быстро и точно возведет любое число в выбранную вами степень.

Представленный инженерный калькулятор содержит в себе все возможные вариации онлайн программ для расчетов. Kalkpro.ru содержит тригонометрический калькулятор (углы и радианы, грады), логарифмов (Log), факториалов (n!), расчета корней, синусов и арктангенсов, косинусов, тангенсов онлайн – множество тригонометрический функций и не только.

Работать с вычислительной программой можно онлайн с любого устройства, в каждом случае размер интерфейса будет подстраиваться под ваше устройство, либо вы можете откорректировать его размер на свой вкус.

Ввод цифр производится в двух вариантах:

  • с мобильных устройств – ввод с дисплеем телефона или планшета, клавишами интерфейса программы
  • с персонального компьютера – с помощью электронного дисплея интерфейса, либо через клавиатуру компьютера любыми цифрами

Инструкция по функциям инженерного калькулятора

Для понимания возможностей программы мы даем вам краткую инструкцию, более подробно смотрите в примерах вычислений онлайн. Принцип работы с научным калькулятором такой: вводится число, с которым будет производиться вычисление, затем нажимается кнопка функции или операции, потом, если требуется, то еще цифра, например, степень, в конце — знак равенства.

  • [Inv] – обратная функция для sin, cos, tan, переключает интерфейс на другие функции
  • [Ln] – натуральный логарифм по основанию «e»
  • [ ( ] и [ ) ] — вводит скобки
  • [Int] – отображает целую часть десятичного числа
  • [Sinh] — гиперболический синус
  • [Sin] – синус заданного угла
  • [X 2 ] – возведение в квадрат (формула x^2)
  • [n!] — вычисляет факториал введенного значения — произведение n последовательных чисел, начиная с единицы до самого введенного числа, например 4!=1*2*3*4, то есть 24
  • [Dms] – переводит из десятичного вида в формат в градусы, минуты, секунды.
  • [Cosh] — гиперболический косинус
  • [Cos] – косинус угла
  • [x y ] – возведение икса в степ. игрик (формула x^y)
  • [ y √x] – извлечение корня в степени y из икс
  • [Pi] – число Пи, выдает значение Pi для расчетов
  • [tanh] — гиперболический тангенс
  • [tan] – тангенс угла онлайн, tg
  • [X 3 ] — помогает возвести в степень 3, в куб (формула x^3)
  • [ 3 √x] — извлечь корень кубический
  • [F – E] — переключает ввод чисел в экспоненциальном представлении и обратно
  • [Exp] — позволяет вводить данные в экспоненциальном представлении.
  • [Mod] — позволяет нам вычислить остаток от деления одного числа на другое
  • [Log] – рассчитывает десятичный логарифм
  • [10^x] – возведение десяти в произвольную степень
  • [1/X] — подсчитывает обратную величину
  • [e^x] – Возведение числа Эйлера в степень
  • [Frac] – отсекает целую часть, оставляет дробную
  • [sinh -1 ] – обратный гиперболический синус
  • [sin -1 ] – арксинус или обратный синус, arcsin или 1/sin
  • [deg] – перевод угла в градусах, минутах и секундах в десятичные доли градуса, подробнее
  • [cosh -1 ] — обратный гиперболический косинус
  • [cos -1 ] – аркосинус или обрат. косинус arccos или 1/cos
  • [2*Pi] – рассчитывает число Пи, помноженное на два
  • [tanh -1 ] – обрат. гиперболический тангенс
  • [tan -1 ] – арктангенс или обратный тангенс, arctg

Как пользоваться MR MC M+ M- MS

Как пользоваться инженерным калькулятором – на примерах

Как возвести в степень

Чтобы возвести, к примеру, 12^3 вводите в следующей последовательности:

12 [x y ] 3 [=]

12, клавиша «икс в степени игрик» [xy], 3, знак равенства [=]

Как найти корень кубический

Допустим, что мы извлекаем корень кубический из 729, нажмите в таком порядке:

729 [3√x] [=]

729, [ 3 √x] «кубический корень из икс», равенства [=]

Как найти корень на калькуляторе

Задача: Найти квадратный корень 36.

Решение: всё просто, нажимаем так:

36 [ y x] 2 [=]

36, [ y √x] «корень из икса, в степени игрик», нужную нам степень 2, равно [=]

При помощи этой функции вы можете найти корень в любой степени, не только квадратный.

Как возвести в квадрат

Для возведения в квадрат онлайн вычислительная программа содержит две функции:

[x y ] «икс в степени игрик», [X 2 ] «икс в квадрате»

Последовательность ввода данных такая же, как и раньше – сначала исходную величину, затем «x^2» и знак равно, либо если не квадрат, а произвольное число, необходимо нажать функцию «x^y», затем указать необходимую степень и так же нажать знак «равно».

Например: 45 [x y ] 6 [=]

Ответ: сорок пять в шестой степ. равно 8303765625

Тригонометрический калькулятор онлайн — примеры

Как произвести онлайн расчет синусов и косинусов, тангенсов

Обратите внимание, что kalkpro.ru способен оперировать как градусами, так радианами и градами.

1 рад = 57,3°; 360° = 2π рад., 1 град = 0,9 градусов или 1 град = 0,015708 радиан.

Для включения того или иного режима измерения нажмите нужную кнопку:

где Deg – градусы, Rad – измерение в радианах, Grad — в градах. По умолчанию включен режим расчета в градусах.

В качестве самого простого примера найдем синус 90 градусов. Нажмите:

90 [sin] [=]

Также рассчитываются и другие тригонометрические функции, например, вычислим косинус 60 °:

60 [cos] [=]

Аналогичным способом вычисляются обратные тригонометрические функции онлайн на КАЛКПРО — арксинус , арккосинус, арктангенс, а также гиперболические функции sinh, cosh, tanh.

Для их ввода необходимо переключить интерфейс, нажав [Inv], появятся новые кнопки – asin, acos, atan. Порядок ввода данных прежний: сначала величину, затем символ нужной функции, будь то акрсинус или арккосинус.

Преобразование с кнопкой Dms и Deg на калькуляторе

[Deg] позволяет перевести угол из формата градусы, минуты и секунды в десятичные доли градуса для вычислений. [Dms] производит обратный перевод – в формат «градусы; минуты; секунды».

Например, угол 35 o 14 минут 04 секунды 53 десятые доли секунды переведем в десятые доли:

35,140453 [Deg] [=] 35,23459166666666666666

Переведем в прежний формат: 35,23459166666666666666 [Dms] [=] 35,140453

Десятичный логарифм онлайн

Десятичный логарифм на калькуляторе рассчитывается следующим образом, например, ищем log единицы по основанию 10, log10(1) или lg1:

1 [log] [=]

Получается 0 в итоге. Для подсчета lg100 нажмем так:

100 [log] [=]

Решение: два. Как себя проверить? Что вообще такое десятичный логарифм — log по основанию 10. В нашем примере 2 – это степень в которую необходимо ввести основание логарифма, то есть 10, чтобы получить 100.

Так же вычисляется натуральный логарифм, но кнопкой [ln].

Как пользоваться памятью на калькуляторе

Существующие кнопки памяти: M+, M-, MR, MS, MC.

Добавить данные в память программы, чтобы потом провести с ними дальнейшие вычисления поможет операция MS.

MR выведет вам на дисплей сохраненную в памяти информацию. MC удалит любые данные из памяти. M- вычтет число на онлайн дисплее из запомненного в памяти.

Пример. Внесем сто сорок пять в память программы:

145 [MR]

После проведения других вычислений нам внезапно понадобилось вернуть запомненное число на экран электронного калькулятора, нажимаем просто:

На экране отобразится снова 145.

Потом мы снова считаем, считаем, а затем решили сложить, к примеру, 85 с запомненным 145, для этого нажимаем [M+], либо [M-] для вычитания 85 из запомненного 145. В первом случае по возвращению итогового числа из памяти кнопкой [MR] получится 230, а во втором, после нажатия [M-] и [MR] получится 60.

Инженерный калькулятор kalkpro.ru быстро и точно проведет сложные вычисления, значительно упрощая ваши задачи.

Перечень калькуляторов и функционал будет расширяться, просто добавьте сайт в закладки и расскажите друзьям!

Источник

Калькулятор онлайн синуса, косинуса, тангенса, котангенса и других тригонометрических функций.

Калькулятор онлайн вычисляет тригонометрические функции для любого значения угла α заданного в градусах: синус (sin), косинус (cos), тангенс (tg), котангенс (ctg), секанс (sec), косеканс (cosec), версинус (синус-верзус) (versin), коверсинус (косинус-верзус) (vercos), гаверсинус (половина от синус-верзус) (haversin), экссеканс (exsec), экскосеканс (excsc).

Вычислить значения синуса и косинуса для стандартных значений углов можно с помощью тригонометрической окружности (тригонометрического круга). Например по тригонометрическому кругу можно найти значение синуса 45 градусов, косинуса 60 градусов или косинуса 90 градусов.

Вычислить значения для тангенсов и котангенсов можно с помощью таблицы синусов, косинусов, тангенсов и котангенсов. Например по таблице тригонометрических функций можно найти значение тангенса 60 градусов или котангенса 30 градусов.

  • Прямые тригонометрические функции

    Дано: Решение:
    Значение угла α, град.
    sin(α) = синус = вычисление синуса угла
    cos (α) = косинус = вычисление косинуса угла

    Производные тригонометрические функции

    tg (α) = тангенс = вычисление тангенса угла
    сtg (α) = котангенс = вычисление котангенса угла

    Прочие тригонометрические функции

    sec (α) = секанс = вычисление секанса угла
    cosec (α) = косеканс = вычисление косеканса угла
    versin (α) = версинус = вычисление версинуса угла
    vercos (α) = коверсинус = вычисление коверсинуса угла
    haversin (α) = гаверсинус = вычисление гаверсинуса угла
    exsec (α) = экссеканс = вычисление экссеканса угла
    excsc (α) = экскосеканс = вычисление экскосеканса угла
    округление до знаков после запятой
    Тригонометрические функций на единичной окружности Тригонометрический круг (тригонометрическая окружность)

    Тригонометрическая таблица основных значений синусов, косинусов, тангенсов и котангенсов.

    α 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
    sin(α) 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 -√3/2 -√2/2 -1/2 0
    cos(α) 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 -√3/2 -√2/2 -1/2 0 1/2 √2/2 √3/2 1
    tg(α) 0 √3/3 1 √3 -√3 -1 -√3/3 0 √3/3 1 √3 -√3 -1 -√3/3 0
    ctg(α) √3 1 √3/3 0 -√3/3 -1 -√3 √3 1 √3/3 0 -√3/3 -1 -√3
    α 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6

    тригонометрические функции — элементарные функции, которые возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией. тригонометрический круг (окружность) — единичная окружность (круг с радиусом равном единице), с центром в начале системы координат.

    Основные тригонометрические функции:

    синус угла α обозначается sin(α) — отношение длины противоположного этому углу катета к гипотенузе; косинус угла α обозначается cos(α) — отношение прилежащего этому углу катета к гипотенузе.

    Остальные тригонометрические функции можно выразить через синус и косинус:

    тангенс обозначается tg(α) — отношение длины противоположного углу катета к прилежащему катету; котангенс обозначается ctg(α) — отношение длины прилежащего к углу катета к противоположному катету; секанс обозначается sec(α) — отношение длины гипотенузы к прилежащему к углу катету; косеканс обозначается cosec(α) — отношение длины гипотенузы к противоположному катету.

    Редко используемые тригонометрические функции:

    версинус обозначается versin(α) — единица минус косинус угла α; коверсинус обозначается vercos(α) — единица минус синус угла α; гаверсинус обозначается haversin(α) — половина версинуса угла α; экссеканс обозначается exsec(α) — секанс угла α минус единица; экскосеканс обозначается excsc(α) — косеканс угла α минус единица.

    1. Округление результатов расчета выполняется до указанного количества знаков после запятой (по умолчанию — округление до сотых).
    2. Блок исходных данных выделен желтым цветом , блок промежуточных вычислений выделен голубым цветом , блок решения выделен зеленым цветом .

    Источник

  • Оцените статью
    ( Пока оценок нет )
    Поделиться с друзьями
    Uchenik.top - научные работы и подготовка
    0 0 голоса
    Article Rating
    Подписаться
    Уведомить о
    guest
    0 Комментарий
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии