Перевод косинуса в тангенс формула

Содержание

Основные тригонометрические формулы и тождества sin, cos, tg, ctg

Содержание:

Основные формулы тригонометрии — это формулы, устанавливающие связи между основными тригонометрическими функциями. Синус, косинус, тангенс и котангенс связаны между собой множеством соотношений. Ниже приведем основные тригонометрические формулы, а для удобства сгруппируем их по назначению. С использованием данных формул можно решить практически любую задачу из стандартного курса тригонометрии. Сразу отметим, что ниже приведены лишь сами формулы, а не их вывод, которому будут посвящены отдельные статьи.

Основные тождества тригонометрии

Тригонометрические тождества дают связь между синусом, косинусом, тангенсом и котангенсом одного угла, позволяя выразить одну функцию через другую.

sin 2 a + cos 2 a = 1 t g α = sin α cos α , c t g α = cos α sin α t g α · c t g α = 1 t g 2 α + 1 = 1 cos 2 α , c t g 2 α + 1 = 1 sin 2 α

Эти тождества напрямую вытекают из определений единичной окружности, синуса (sin), косинуса (cos), тангенса (tg) и котангенса (ctg).

Формулы приведения

Формулы приведения позволяют переходить от работы с произвольными и сколь угодно большими углами к работе с углами в пределах от 0 до 90 градусов.

sin α + 2 π z = sin α , cos α + 2 π z = cos α t g α + 2 π z = t g α , c t g α + 2 π z = c t g α sin — α + 2 π z = — sin α , cos — α + 2 π z = cos α t g — α + 2 π z = — t g α , c t g — α + 2 π z = — c t g α sin π 2 + α + 2 π z = cos α , cos π 2 + α + 2 π z = — sin α t g π 2 + α + 2 π z = — c t g α , c t g π 2 + α + 2 π z = — t g α sin π 2 — α + 2 π z = cos α , cos π 2 — α + 2 π z = sin α t g π 2 — α + 2 π z = c t g α , c t g π 2 — α + 2 π z = t g α sin π + α + 2 π z = — sin α , cos π + α + 2 π z = — cos α t g π + α + 2 π z = t g α , c t g π + α + 2 π z = c t g α sin π — α + 2 π z = sin α , cos π — α + 2 π z = — cos α t g π — α + 2 π z = — t g α , c t g π — α + 2 π z = — c t g α sin 3 π 2 + α + 2 π z = — cos α , cos 3 π 2 + α + 2 π z = sin α t g 3 π 2 + α + 2 π z = — c t g α , c t g 3 π 2 + α + 2 π z = — t g α sin 3 π 2 — α + 2 π z = — cos α , cos 3 π 2 — α + 2 π z = — sin α t g 3 π 2 — α + 2 π z = c t g α , c t g 3 π 2 — α + 2 π z = t g α

Формулы приведения являются следствием периодичности тригонометрических функций.

Тригонометрические формулы сложения

Формулы сложения в тригонометрии позволяют выразить тригонометрическую функцию суммы или разности углов через тригонометрические функции этих углов.

Тригонометрические формулы сложения

sin α ± β = sin α · cos β ± cos α · sin β cos α + β = cos α · cos β — sin α · sin β cos α — β = cos α · cos β + sin α · sin β t g α ± β = t g α ± t g β 1 ± t g α · t g β c t g α ± β = — 1 ± c t g α · c t g β c t g α ± c t g β

На основе формул сложения выводятся тригонометрические формулы кратного угла.

Формулы кратного угла: двойного, тройного и т.д.

sin 2 α = 2 · sin α · cos α cos 2 α = cos 2 α — sin 2 α , cos 2 α = 1 — 2 sin 2 α , cos 2 α = 2 cos 2 α — 1 t g 2 α = 2 · t g α 1 — t g 2 α с t g 2 α = с t g 2 α — 1 2 · с t g α sin 3 α = 3 sin α · cos 2 α — sin 3 α , sin 3 α = 3 sin α — 4 sin 3 α cos 3 α = cos 3 α — 3 sin 2 α · cos α , cos 3 α = — 3 cos α + 4 cos 3 α t g 3 α = 3 t g α — t g 3 α 1 — 3 t g 2 α c t g 3 α = c t g 3 α — 3 c t g α 3 c t g 2 α — 1

Формулы половинного угла

Формулы половинного угла в тригонометрии являются следствием формул двойного угла и выражают соотношения между основными функциями половинного угла и косинусом целого угла.

Формулы половинного угла

sin 2 α 2 = 1 — cos α 2 cos 2 α 2 = 1 + cos α 2 t g 2 α 2 = 1 — cos α 1 + cos α c t g 2 α 2 = 1 + cos α 1 — cos α

Формулы понижения степени

sin 2 α = 1 — cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 α = 3 sin α — sin 3 α 4 cos 3 α = 3 cos α + cos 3 α 4 sin 4 α = 3 — 4 cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 cos 2 α + cos 4 α 8

Часто при расчетах действовать с громоздктми степенями неудобно. Формулы понижения степени позволяют понизить степень тригонометрической функции со сколь угодно большой до первой. Приведем их общий вид:

Общий вид формул понижения степени

sin n α = C n 2 n 2 n + 1 2 n — 1 ∑ k = 0 n 2 — 1 ( — 1 ) n 2 — k · C k n · cos ( ( n — 2 k ) α ) cos n α = C n 2 n 2 n + 1 2 n — 1 ∑ k = 0 n 2 — 1 C k n · cos ( ( n — 2 k ) α )

sin n α = 1 2 n — 1 ∑ k = 0 n — 1 2 ( — 1 ) n — 1 2 — k · C k n · sin ( ( n — 2 k ) α ) cos n α = 1 2 n — 1 ∑ k = 0 n — 1 2 C k n · cos ( ( n — 2 k ) α )

Сумма и разность тригонометрических функций

Разность и сумму тригонометрических функций можно представить в виде произведения. Разложение на множители разностей синусов и косинусов очень удобно применять при решении тригонометрических уравнений и упрощении выражений.

Сумма и разность тригонометрических функций

sin α + sin β = 2 sin α + β 2 · cos α — β 2 sin α — sin β = 2 sin α — β 2 · cos α + β 2 cos α + cos β = 2 cos α + β 2 · cos α — β 2 cos α — cos β = — 2 sin α + β 2 · sin α — β 2 , cos α — cos β = 2 sin α + β 2 · sin β — α 2

Произведение тригонометрических функций

Если формулы суммы и разности функций позволяют перейти к их произведению, то формулы произведения тригонометрических функций осуществляют обратный переход — от произведения к сумме. Рассматриваются формулы произведения синусов, косинусов и синуса на косинус.

Формулы произведения тригонометрических функций

sin α · sin β = 1 2 · ( cos ( α — β ) — cos ( α + β ) ) cos α · cos β = 1 2 · ( cos ( α — β ) + cos ( α + β ) ) sin α · cos β = 1 2 · ( sin ( α — β ) + sin ( α + β ) )

Универсальная тригонометрическая подстановка

Все основные тригонометрические функции — синус, косинус, тангенс и котангенс, — могут быть выражены через тангенс половинного угла.

Универсальная тригонометрическая подстановка

sin α = 2 t g α 2 1 + t g 2 α 2 cos α = 1 — t g 2 α 2 1 + t g 2 α 2 t g α = 2 t g α 2 1 — t g 2 α 2 c t g α = 1 — t g 2 α 2 2 t g α 2

Источник

Тригонометрические формулы.

Тригонометрические формулы — это самые необходимые в тригонометрии формулы, необходимые для выражения тригонометрических функций, которые выполняются при любых значениях аргумента.

Формулы сложения.

sin (α + β) = sin α · cos β + sin β · cos α

sin (α — β) = sin α · cos β — sin β · cos α

cos (α + β) = cos α · cos β — sin α · sin β

cos (α — β) = cos α · cos β + sin α · sin β

tg (α + β) = (tg α + tg β) ÷ (1 — tg α · tg β)

tg (α — β) = (tg α — tg β) ÷ (1 + tg α · tg β)

ctg (α + β) = (ctg α · ctg β + 1) ÷ (ctg β — ctg α)

ctg (α — β) = (ctg α · ctg β — 1) ÷ (ctg β + ctg α)

Формулы двойного угла.

tg 2α = (2tg α) ÷ (1 — tg² α)

Формулы тройного угла.

sin 3α = 3sin α — 4sin³ α

ctg 3α = (3ctg α — ctg³ α) ÷ (1 — 3ctg² α)

Формулы половинного угла.

Синус половинного угла. Примечание: Знак перед корнем выбирается в зависимости от квадранта, в который попадает угол α/2 в левой части. Данное правило справедливо также для других формул, приведенных ниже.

Косинус половинного угла:

Тангенс половинного угла:

Котангенс половинного угла:

Выражение синуса через тангенс половинного угла:

Выражение косинуса через тангенс половинного угла:

Выражение тангенса через тангенс половинного угла:

Выражение котангенса через тангенс половинного угла:

Источник

Vladimirus-team

Найти тангенс фи , если известен косинус фи

  • Получить ссылку
  • Facebook
  • Twitter
  • Pinterest
  • Электронная почта
  • Другие приложения

Калькулятор коэффициент мощности cos fi в tg fi

Как найти тангенс фи, если известен косинус фи формула:

Калькулятор онлайн — коэффициент мощности перевести cos в tg

Поделиться в соц сетях:

  • Получить ссылку
  • Facebook
  • Twitter
  • Pinterest
  • Электронная почта
  • Другие приложения

Комментарии

Отправка комментария

Популярные сообщения из этого блога

Калькулятор индекса формы тела — ABSI – индекс формы тела

ABSI – индекс формы тела — калькулятор индекса формы тела. Оценка нормальности тела при помощь ИФТ — Индекс формы тела.

ABSI ( A Body Shape Index) — является метрикой для оценки последствий для здоровья лишней массы тела. Включение в расчёт окружности талии делает BSI лучшим показателем риска для здоровья от избыточного веса, чем стандартный индекс массы тела.

ABSI является строгим статистическим индикатором риска преждевременной смерти – каждый шаг повышения индекса ассоциирован с 13% — ым ростом показателя. Среди участников исследований, чей ABSI находился в верхних 20-процентных пределах значений, риск преждевременной смерти оказался на 61% выше, чем у тех, чей индекс был в нижних 20-процентных пределах.
ABSI – индекс формы тела — онлайн калькулятор индекса формы тела. Вес:

A Body Shape Index (Индекс формы тела):

Body mass index (BMI) (Индекс массы тела):

Чем ниже значение ABSI, тем меньше риск для здоровья.

Приведенные ниже данны…

Индекс Руфье калькулятор

Проба Руфье калькулятор онлайн. Первые упоминания теста относиться к 1950 году. Именно в это время мы находим первое упоминание доктора Диксона о «Использование сердечного индекса Руфье в медико-спортивном контроле».

Проба Руфье — представляет собой нагрузочный комплекс, предназначенный для оценки работоспособности сердца при физической нагрузке.
Индекс Руфье для школьников и студентов.У испытуемого, находящегося в положении лежа на спине в течение 5 мин, определяют число пульсаций за 15 сек (P1); После чего в течение 45 сек испытуемый выполняет 30 приседаний. После окончания нагрузки испытуемый ложится, и у него вновь подсчитывается число пульсаций за первые 15 с (Р2); И в завершении за последние 15 сек первой минуты периода восстановления (Р3); Оценку работоспособности сердца производят по формуле: Индекс Руфье = (4(P1+P2+P3)-200)/10; Индекс Руфье для спортсменовИзмеряют пульс в положении сидя (Р1);Спортсмен выполняет 30 глубоких приседаний в течение 30 с. После эт…

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Uchenik.top - научные работы и подготовка
0 0 голоса
Article Rating
Подписаться
Уведомить о
guest
0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии