Перевод объемного расхода пара в массовый

Справка по объемному расходу. Единицы измерения объемного расхода. Конвектор величин объемного расхода. Калькуляторы объемного расхода.

Поделиться ссылкой:

Общие сведения

Для обозначения объемного расхода обычно используется буква Q (Qv) .

Широко используется при гидравлических и теплотехнических расчетах.

Расчет объемного расхода возможен по нескольким формулам исходя из исходных данных:

При расчетах необходимо учитывать зависимость плотности:

Перевод единиц измерения объемного расхода онлайн

Калькулятор объемных расходов. Перевод единиц измерения объемного расхода (м 3 /с, м 3 /ч, л/с, л/м, л/ч и т.д.)
Введите объемный расход (Qv)
Результат перевода единиц измерения объемных расходов (Qv)
Результаты работы калькулятора объемного расхода при переводе в другие единицы измерения объемного расхода:
Примеры результатов работы калькулятора объемного расхода:
Поделится ссылкой на расчет:

Единицы измерения объемного расхода

Перевод единиц измерения объемного расхода (в табличном виде)

Переводимые единицы измерения Перевод в единицы измерения:
м 3 /с м 3 /ч л/с л/м л/ч
м 3 /с 1 1/3600 1/1000 1/60000 1/3600000
м 3 /ч 1000 3600 60 1

Приборы для измерения расходов

Для измерения расходов газа или жидкости используются приборы — расходомеры. Поскольку сжимаемые и несжимаемые вещества имеют свою специфику измерения, то и устройства различаются по принципам действия. Каждый вид расходомера рассчитан на работу в среде с определенными эксплуатационными характеристиками. Существует большое разнообразие расходомеров по принципу действия, но большинство из них связанно с измерением параметров приведенных в расчетных формулах (приведенных выше) с последующим расчетом расходов.

Виды объемных расходов газов

В инженерных расчетах жидкости считаются практически несжимаемыми. Вещества в газообразном состоянии естественно считаются сжимаемыми. То есть плотность газов, а соответственно и объем, зависит от давления и температуры газа. В связи с этим при расчетах, проектировании и эксплуатации принято различать несколько видов объемного расхода газа:

Для перерасчета объемных расходов газа (схожего по свойствам с моделью идеального газа) при разных условиях используется уравнение объединённого газового закона:

(P*V)/T=const, то есть

Примечание: Данные формулы выведены для идеального газа. Применимость для реальных газов в чистом виде ограничены, если:

В этих случаях требуется использовать более точные уравнения — уравнения состояния реальных газов. Примером уточненных расчетов могут служит расчеты параметров водяного пара или учет сжимаемости природного газа.

Источник

Объемный и массовый расход газа

Расход газа – это количество газа, прошедшего через поперечное сечение трубопровода за единицу времени. Вопрос в том, что принять за меру количества газа. В этом качестве традиционно выступает объем газа, а получаемый расход называют объемным. Не случайно чаще всего расход газа выражают в объемных единицах (см3/мин, л/мин, м3/ч и т.д.). Другой мерой количества газа является его масса, а соответствующий расход называется массовым. Он измеряется в массовых единицах (например, г/с или кг/ч), которые на практике встречаются значительно реже.

Как объем связан с массой, так и объемный расход связан с массовым через плотность вещества:
, где – массовый расход, – объемный расход, – плотность газа в условиях измерения (рабочие условия). Пользуясь этим соотношением, для массового расхода переходят к использованию объемных единиц (см3/мин, л/мин, м3/ч и т.д.), но с указанием условий (температуру и давление газа), определяющих плотность газа. В России применяют «стандартные условия» (ст.): давление 101,325 кПа (абс) и температура 20°С. Помимо «стандартных», в Европе используют «нормальные условия» (н.): давление 101,325 кПа (абс) и температура 0°С. В результате, получаются единицы массового расхода н.л/мин, ст.м3/ч и т.д.

Итак, расход газа бывает объемным и массовым. Какой из них следует измерять в конкретном применении? Как наглядно увидеть разницу между ними? Давайте рассмотрим простой эксперимент, где три расходомера последовательно установлены в магистраль. Весь газ, поступающий на вход схемы, проходит через каждый из трех приборов и выбрасывается в атмосферу. Утечек или накопления газа в промежуточных точках системы не происходит.

Источником сжатого воздуха является компрессора, от которого под давлением 0,5…0,7 бар (изб) газ подаётся на вход поплавкового ротаметра. Выход ротаметра подключен ко входу теплового регулятора расхода газа серии EL-FLOW, производства компании Bronkhorst. В нашей схеме именно он регулирует количество газа, проходящее через систему. Далее газ подаётся на вход второго поплавкового ротаметра, абсолютно идентичного первому. При задании расхода 2 н.л/мин с помощью расходомера EL-FLOW первый поплавковый ротаметр дает показания 1,65 л/мин, а второй – 2,1 л/мин. Все три расходомера дают различные показания, причем разница достигает 30%. Хотя через каждый прибор проходит одно и то же количество газа.

Попробуем разобраться. Какая мера количества газа в данной ситуации остается постоянной: объем или масса? Ответ: масса. Все молекулы газа, попавшие на вход в систему, проходят через нее и выбрасываются в атмосферу после прохождения второго поплавкового ротаметра. Молекулы как раз и являются носителями массы газа. При этом удельный объем (расстояние между молекулами газа) в разных частях системы изменяется вместе с давлением.

Здесь следует вспомнить, что газы сжимаемы, чем выше давление, тем меньше объем занимает газ (закон Бойля-Мариотта). Характерный пример: цилиндр емкостью 1 литр, герметично закрытый подвижным поршнем малого веса. Внутри него содержится 1 литр воздуха при давлении порядка 1 бар (абс). Масса такого объема воздуха при температуре равной 20°С составляет 1,205 г. Если переместить поршень на половину расстояния до дна, то объем воздуха в цилиндре сократится наполовину и составит 0,5 литра, а давление повысится до 2 бар (абс), но масса газа не изменится и по-прежнему составит 1,205 г. Ведь общее количество молекул воздуха в цилиндре не изменилось.

Возвратимся к нашей системе. Массовый расход (количество молекул газа, проходящих через любое поперечное сечение в единицу времени) в системе постоянен. При этом давление в разных частях системы отличается. На входе в систему, внутри первого поплавкового ротаметра и в измерительной части расходомера EL-FLOW давление составляет порядка 0,6 бар (изб). В то время, как на выходе EL-FLOW и внутри второго поплавкового ротаметра давление практически атмосферное. Удельный объем газа на входе ниже, чем на выходе. Получается, что и объемный расход газа на входе ниже, чем на выходе.

Эти рассуждения подтверждаются и показаниями расходомеров. Расходомер EL-FLOW измеряет и поддерживает массовый расход воздуха на уровне 2 н.л/мин. Поплавковые ротаметры измеряют объемный расход при рабочих условиях. Для ротаметра на входе это: давление 0,6 бар (изб) и температура 21°С; для ротаметра на выходе: 0 бар (изб), 21°С. Также понадобится атмосферное давление: 97,97 кПа (абс). Для корректного сравнения показаний объемного расхода, все показания должны быть приведены к одним и тем же условиям. Возьмем в качестве таковых «нормальные условия» расходомера EL-FLOW: 101,325 кПа (абс) и температура 0°С.

Пересчет показаний поплавковых ротаметров в соответствии с методикой поверки ротаметров ГОСТ 8.122-99 осуществляется по формуле:

, где Q – расход при рабочих условиях; Р и Т – рабочие давление и температура газа; QС – расход при условиях приведения; Рс и Тс – давление и температура газа, соответствующие условиям приведения.

Пересчет показаний ротаметра на входе к нормальным условиям по этой формуле даёт значение расхода 1,985 л/мин, а ротаметра на выходе – 1,990 л/мин. Теперь разброс показаний расходомеров не превышает 0,75%, что при точности ротаметров 3% ВПИ является отличным результатом.

Из приведенного примера видно, что объемный расход сильно зависит от рабочих условий. Мы показали зависимость от давления, но в той же мере объемный расход зависит и от температуры (закон Гей-Люссака). Даже в технологической схеме, имеющей один вход и один выход, где отсутствуют утечки и накопление газа, показания объемного расходомера будут сильно зависеть от конкретного места установки. Хотя массовый расход будет одним и тем же в любой точке такой схемы.

Хорошо понимать физику процесса. Но, все же, какой расходомер выбрать: объемного расхода или массового? Ответ зависит от конкретной задачи. Каковы требования технологического процесса, с каким газом необходимо работать, величина измеряемого расхода, точность измерений, рабочие температура и давление, особые правила и нормы, действующие в Вашей сфере деятельности, и, наконец, отведенный бюджет. Также следует учитывать, что многие расходомеры, измеряющие объемный расход, могут комплектоваться датчиками температуры и давления. Они поставляются вместе с корректором, который фиксирует показания расходомера и датчиков, а затем приводит показания расходомера к стандартным условиям.

Но, тем не менее, можно дать общие рекомендации. Массовый расход важен тогда, когда в центре внимания находится сам газ, и необходимо контролировать количество молекул, не обращая внимания на рабочие условия (температура, давление). Здесь можно отметить динамическое смешение газов, реакторные системы, в том числе каталитические, системы коммерческого учета газов.

Измерение объемного расхода необходимо в случаях, когда основное внимание уделяется тому, что находится в объеме газа. Типичные примеры – промышленная гигиена и мониторинг атмосферного воздуха, где необходимо проводить количественную оценку загрязнений в объеме воздуха в реальных условиях.

Источник

Оцените статью
( Пока оценок нет )
Поделиться с друзьями
Uchenik.top - научные работы и подготовка
0 0 голоса
Article Rating
Подписаться
Уведомить о
guest
0 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии