Представление отрицательных чисел в двоичной системе счисления
Положительные числа нами были рассмотрены ранее. Рассмотрим способы представления отрицательных чисел в двоичном коде. Существует несколько способов такого представления. Мы рассмотрим три:
Старший бит младший бит
Если бит-знак равен 0, то число считается положительным, а если бит-знак равен 1 = отрицательным.
Недостатком прямого кода является невозможность выполнения арифметических операций.
Рассмотрим сложение: 12+(-12)=0
Числа здесь представляются так:
Число в смещенном коде | Двоичный код | Число без знака |
………. | ……… | ..……. |
-1 | ||
………. | ………. | ……… |
-127 | ||
-128 |
Достоинством данной системы является то, что в ней выполняются арифметические операции, правда с учетом коррекции результата. А недостатком является то, что 0 соответствует числу 128.
Рассмотрим сложение: 12+(-12)=0
Как видим, в результате операции получилось число 256. Ограничив предел рассмотрения одним байтом, получим 00000000, к этому результату надо прибавить смещение 128.
Рассмотрим сложение: 12+(-13)=0
Как видим, и в данном случае к результату необходимо прибавить 128 и ограничить рассмотрение одним байтом.
1. запишем число без знака: 9;
2. преобразуем число в двоичный код: 00001001;
3. получим обратный код: 11110110;
4. прибавим 00000001 и получим: 11110111.
Если результат операции представлен в дополнительном коде, то для перевода его в десятичный вид используем нижеследующую процедуру
1. запишем дополнительный код: 11110111;
2. получим обратный код: 00001000;
3. прибавим 00000001: 00001001;
Знак минус мы добавили, так как знаем, что наше исходное число в дополнительном коде отрицательное (старший бит равен 1)
Рассмотрим таблицу соответствия чисел представленных в дополнительном коде.
Число со знаком | Двоичный код | Число без знака |
+127 | ||
………………………. | ………………………… | ………………………… |
+2 | ||
+1 | ||
+0 | ||
-1 | ||
-2 | ||
-3 | ||
………………………. | ………………………… | ………………………… |
-128 |
В дополнительном коде сохраняются все правила выполнения арифметических операций.
Дата добавления: 2014-01-07 ; Просмотров: 9055 ; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Прямой, дополнительный и обратный коды
Прямой, дополнительный и обратный код числа (создан по запросу).
Этот материал распространяется на условиях лицензии Creative Commons Attribution/Share-Alike License 3.0 (Unported). Это означает, что вы можете размещать этот контент на своем сайте или создавать на его основе собственный (в том числе и в коммерческих целях), при условии сохранения оригинального лицензионного соглашения. Кроме того, Вы должны отметить автора этой работы, путем размещения HTML ссылки на оригинал работы https://planetcalc.ru/747/. Пожалуйста оставьте без изменения все ссылки на других авторов данной работы или работы, на основе которой создана данная работа (если таковые имеются в спроводительном тексте).
Далее идет калькулятор, который переводит введенное положительное или отрицательное целое число в двоичный код, а также выводит обратный код этого числа и его дополнительный код. Под калькулятором, как водится, немного теории.
Обновление: Из комментариев становится ясно, что люди не вполне понимают, что делает этот калькулятор. Точнее, что делал — применял алгоритм вычисления дополнительного кода к любому числу. Люди хотят, чтобы он им просто показывал дополнительный код числа. Ну хорошо — теперь при вводе положительного числа калькулятор показывает представление числа в двоичной форме, ибо для него нет обратного и дополнительного кода, а при вводе отрицательного показывает дополнительный и обратный код.
Прямой, дополнительный и обратный код
Прямой код числа это представление беззнакового двоичного числа. Если речь идет о машинной арифметике, то как правило на представление числа отводится определенное ограниченное число разрядов. Диапазон чисел, который можно представить числом разрядов n равен
Обратный код числа, или дополнение до единицы (one’s complement) это инвертирование прямого кода (поэтому его еще называют инверсный код). То есть все нули заменяются на единицы, а единицы на нули.
Дополнительный код числа, или дополнение до двойки (two’s complement) это обратный код, к младшему значащему разряду которого прибавлена единица
А теперь «зачем, зачем это все?» ©
Для различия положительных и отрицательных чисел выделяют старший разряд числа, который называется знаковым (sign bit)
0 в этом разряде говорит нам о том, что это положительное число, а 1 — отрицательное.
С положительными числами все вроде бы понятно, для их представления можно использовать прямой код
0 — 0000
1 — 0001
7 — 0111
А как представить отрицательные числа?
И это оказалось очень удобно для машинных вычислений — при таком представлении отрицательного числа операции сложения и вычитания можно реализовать одной схемой сложения, при этом очень легко определять переполнение результата (когда для представления получившегося числа не хватает разрядности)
Пара примеров
7-3=4
0111 прямой код 7
1101 дополнительный код 3
0100 результат сложения 4
-1+7=6
1111 дополнительный код 1
0111 прямой код 7
0110 результат сложения 6
Что касается переполнения — оно определяется по двум последним переносам, включая перенос за старший разряд. При этом если переносы 11 или 00, то переполнения не было, а если 01 или 10, то было. При этом, если переполнения не было, то выход за разряды можно игнорировать.
Примеры где показаны переносы и пятый разряд
00111 прямой код 7
00001 прямой код 1
01110 переносы
01000 результат 8 — переполнение
Два последних переноса 01 — переполнение
-7+7=0
00111 прямой код 7
01001 дополнительный код 7
11110 переносы
10000 результат 16 — но пятый разряд можно игнорировать, реальный результат 0
Два последних переноса 11 з перенос в пятый разряд можно отбросить, оставшийся результат, ноль, арифметически корректен.
Опять же проверять на переполнение можно простейшей операцией XOR двух бит переносов.
Вот благодаря таким удобным свойствам дополнительный код это самый распространенный способ представления отрицательных чисел в машинной арифметике.
Перевод чисел из одной системы счисления в любую другую онлайн
Для перевода чисел из десятичной с/с в любую другую, необходимо делить десятичное число на основание системы, в которую переводят, сохраняя при этом остатки от каждого деления. Результат формируется справа налево. Деление продолжается до тех пор, пока результат деления не станет меньше делителя.
Калькулятор переводит числа из одной системы счисления в любую другую. Он может переводить числа из двоичной в десятичную или из десятичной в шестнадцатеричную, показывая подробный ход решения. Вы с легкостью можете перевести число из троичной в пятеричную или даже из семеричной в семнадцатеричную. Калькулятор умеет переводить числа из любой системы счисления в любую другую.
Онлайн калькулятор перевода чисел из одной системы счисления в любую другую
Способы перевода чисел из одной системы счисления в другую
В программу ЕГЭ по информатике входят несколько задач, связанных с переводом чисел из одной системы в другую. Как правило, это преобразование между 8- и 16-ричными системами и двоичной. Это разделы А1, В11. Но есть и задачи с другими системами счисления, как например, в разделе B7.
Для начала напомним две таблицы, которые хорошо бы знать наизусть тем, кто выбирает информатику своей дальнейшей профессией.
Таблица степеней числа 2:
2 1 | 2 2 | 2 3 | 2 4 | 2 5 | 2 6 | 2 7 | 2 8 | 2 9 | 2 10 |
2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
Таблица двоичных чисел от 0 до 15 c 16-ричным представлением:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Недостающие значения тоже нетрудно вычислить, прибавляя по 1 к известным значениям.
Арифметические операции в двоичной системе счисления
При сложении двух чисел, равных 1, в данном разряде получается 0, а 1-ца переносится в старший разряд.
Перевод целых чисел
Способ 2: Распишем слагаемые как степени двойки друг под другом, начиная с большего.
2 9 = | 1000000000 | (1 и девять нулей) + |
2 8 = | 100000000 | (1 и восемь нулей) + |
2 5 = | 100000 | (1 и пять нулей) + |
2 3 = | 1000 | (1 и три нуля) + |
2 1 = | 10 | (1 и один ноль) |
Вот и всё. Попутно также просто решается задача «сколько единиц в двоичной записи числа 810?».
Ответ — столько, сколько слагаемых (степеней двойки) в таком его представлении. У 810 их 5.
Теперь пример попроще.
Ну и, наконец, совсем лёгкие переводы между 8- и 16-ричными системами. Так как их основанием является степень двойки, то перевод делается автоматически, просто заменой цифр на их двоичное представление. Для 8-ричной системы каждая цифра заменяется тремя двоичными разрядами, а для 16-ричной четырьмя. При этом все ведущие нули обязательны, кроме самого старшего разряда.
Переведем в двоичную систему число 5478.
5478= | 101 | 100 | 111 |
5 | 4 | 7 |
Ещё одно, например 7D6A16.
7D6A16= | (0)111 | 1101 | 0110 | 1010 |
7 | D | 6 | A |
Перевод отрицательных чисел
Перевод дробных чисел
Переведем число 0,6752 в двоичную систему.
0 | ,6752 |
*2 | |
1 | ,3504 |
*2 | |
0 | ,7008 |
*2 | |
1 | ,4016 |
*2 | |
0 | ,8032 |
*2 | |
1 | ,6064 |
*2 | |
1 | ,2128 |
Процесс можно продолжать долго, пока не получим все нули в дробной части или будет достигнута требуемая точность. Остановимся пока на 6-м знаке.
Нужно перевести число 81010 в двоичную систему