Перевод в операторную форму
Сущность операторного метода заключается в том, что функции вещественной переменной t, которую называют оригиналом, ставится в соответствие функция
комплексной переменной
, которую называют изображением. В результате этого производные и интегралы от оригиналов заменяются алгебраическими функциями от соответствующих изображений (дифференцирование заменяется умножением на оператор р, а интегрирование – делением на него), что в свою очередь определяет переход от системы интегро-дифференциальных уравнений к системе алгебраических уравнений относительно изображений искомых переменных. При решении этих уравнений находятся изображения и далее путем обратного перехода – оригиналы. Важнейшим моментом при этом в практическом плане является необходимость определения только независимых начальных условий, что существенно облегчает расчет переходных процессов в цепях высокого порядка по сравнению с классическим методом.
Изображение заданной функции
определяется в соответствии с прямым преобразованием Лапласа:
| (1) |
В сокращенной записи соответствие между изображением и оригиналом обозначается, как:
или
Следует отметить, что если оригинал увеличивается с ростом t, то для сходимости интеграла (1) необходимо более быстрое убывание модуля
. Функции, с которыми встречаются на практике при расчете переходных процессов, этому условию удовлетворяют.
В качестве примера в табл. 1 приведены изображения некоторых характерных функций, часто встречающихся при анализе нестационарных режимов.
Таблица 1. Изображения типовых функций
Оригинал | Изображение |
A | |
Некоторые свойства изображений
- Изображение суммы функций равно сумме изображений слагаемых:
.
.
С использованием этих свойств и данных табл. 1, можно показать, например, что
.
Изображения производной и интеграла
В курсе математики доказывается, что если , то
, где
— начальное значение функции
.
Таким образом, для напряжения на индуктивном элементе можно записать
или при нулевых начальных условиях
.
Отсюда операторное сопротивление катушки индуктивности
.
Аналогично для интеграла: если , то
.
С учетом ненулевых начальных условий для напряжения на конденсаторе можно записать:
.
или при нулевых начальных условиях
,
откуда операторное сопротивление конденсатора
.
Закон Ома в операторной форме
Пусть имеем некоторую ветвь (см. рис. 1), выделенную из некоторой
сложной цепи. Замыкание ключа во внешней цепи приводит к переходному процессу, при этом начальные условия для тока в ветви и напряжения на конденсаторе в общем случае ненулевые.
Для мгновенных значений переменных можно записать:
.
Тогда на основании приведенных выше соотношений получим:
.
| (2) |
где — операторное сопротивление рассматриваемого участка цепи.
Следует обратить внимание, что операторное сопротивление соответствует комплексному сопротивлению
ветви в цепи синусоидального тока при замене оператора р на
.
Уравнение (2) есть математическая запись закона Ома для участка цепи с источником ЭДС в операторной форме. В соответствии с ним для ветви на рис. 1 можно нарисовать операторную схему замещения, представленную на рис. 2.
Законы Кирхгофа в операторной форме
Первый закон Кирхгофа: алгебраическая сумма изображений токов, сходящихся в узле, равна нулю
.
Второй закон Кирхгофа:алгебраическая сумма изображений ЭДС, действующих в контуре, равна алгебраической сумме изображений напряжений на пассивных элементах этого контура
.
При записи уравнений по второму закону Кирхгофа следует помнить о необходимости учета ненулевых начальных условий (если они имеют место). С их учетом последнее соотношение может быть переписано в развернутом виде
.
В качестве примера запишем выражение для изображений токов в цепи на рис. 3 для двух случаев: 1 — ; 2 —
.
В первом случае в соответствии с законом Ома .
Во втором случае, т.е. при , для цепи на рис. 3 следует составить операторную схему замещения, которая приведена на рис. 4. Изображения токов в ней могут быть определены любым методом расчета линейных цепей, например, методом контурных токов:
откуда ;
и
.
Переход от изображений к оригиналам
Переход от изображения искомой величины к оригиналу может быть осуществлен следующими способами:
1. Посредством обратного преобразования Лапласа
,
которое представляет собой решение интегрального уравнения (1) и сокращенно записывается, как:
.
На практике этот способ применяется редко.
2. По таблицам соответствия между оригиналами и изображениями
В специальной литературе имеется достаточно большое число формул соответствия, охватывающих практически все задачи электротехники. Согласно данному способу необходимо получить изображение искомой величины в виде, соответствующем табличному, после чего выписать из таблицы выражение оригинала.
Например, для изображения тока в цепи на рис. 5 можно записать
.
Тогда в соответствии с данными табл. 1
,
что соответствует известному результату.
3. С использованием формулы разложения
Пусть изображение искомой переменной определяется отношением двух полиномов
,
где .
Это выражение может быть представлено в виде суммы простых дробей
| (3) |
где — к-й корень уравнения
.
Для определения коэффициентов умножим левую и правую части соотношения (3) на (
):
.
При
.
Рассматривая полученную неопределенность типа по правилу Лопиталя, запишем
.
.
Поскольку отношение есть постоянный коэффициент, то учитывая, что
, окончательно получаем
| (4) |
Соотношение (4) представляет собой формулу разложения. Если один из корней уравнения равен нулю, т.е.
, то уравнение (4) сводится к виду
.
В заключение раздела отметим, что для нахождения начального и конечного
значений оригинала можно использовать предельные соотношения
которые также могут служить для оценки правильности полученного изображения.
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
- Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.
- В чем заключается сущность расчета переходных процессов операторным методом?
- Что такое операторная схема замещения?
- Как при расчете операторным методом учитываются ненулевые независимые начальные условия?
- Какими способами на практике осуществляется переход от изображения к оригиналу?
- Для чего используются предельные соотношения?
- Как связаны изображение и оригинал в формуле разложения? Какие имеются варианты ее написания?
С использованием теоремы об активном двухполюснике записать операторное изображение для тока через катушку индуктивности в цепи на рис. 6.
Ответ: .
С использованием предельных соотношений и решения предыдущей задачи найти начальное и конечное значения тока в ветви с индуктивным элементом.
Ответ: .