Преобразовать милливольт в вольт (нВ в В):
С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘985 милливольт’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘милливольт’ или ‘нВ’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрическое напряжение’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ‘5 нВ в В‘ или ’45 нВ сколько В‘ или ’39 милливольт -> вольт‘ или ’55 нВ = В‘ или ’10 милливольт в В‘ или ’40 нВ в вольт‘ или ’18 милливольт сколько вольт‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.
Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(40 * 62) нВ’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии. Например, такое сочетание может выглядеть следующим образом: ‘985 милливольт + 2955 вольт’ или ’69mm x 60cm x 54dm = ? cm^3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.
Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 8,844 357 450 380 5 × 10 26 . В этой форме представление числа разделяется на экспоненту, здесь 26, и фактическое число, здесь 8,844 357 450 380 5. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 8,844 357 450 380 5E+26. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 884 435 745 038 050 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.
Сколько вольт в 1 милливольт?
1 милливольт [нВ] = 0,001 вольт [В] — Калькулятор измерений, который, среди прочего, может использоваться для преобразования милливольт в вольт.
Измерение электрической энергии
Общие сведения
Поднимаясь в гору, мы совершаем работу против силы притяжения
Поскольку мы живём в эпоху электричества, многим нам с детства знакомо понятие электрического напряжения:
ведь мы порой, исследуя окружающую действительность, получали от него немалый шок, засунув тайком от родителей пару пальцев в розетку питания электрических устройств. Поскольку вы читаете эту статью, ничего особо страшного с вами не произошло — трудно жить в эпоху электричества и не познакомится с ним накоротке. С понятием
электрического потенциала
дело обстоит несколько сложнее.
Будучи математической абстракцией, электрический потенциал лучше всего по аналогии описывается действием гравитации — математические формулы абсолютно схожи, за исключением того, не существуют отрицательные гравитационные заряды, так как масса всегда положительная и в то же время электрические заряды бывают как положительными, так и отрицательными; электрические заряды могут как притягиваться, так и отталкиваться. В результате же действия гравитационных сил тела могут только притягиваться, но не могут отталкиваться. Если бы мы смогли разобраться с отрицательной массой, мы бы овладели антигравитацией.
Но стоит только оттолкнуться…
Понятие электрического потенциала играет важную роль в описании явлений, связанных с электричеством. Вкратце понятие электрического потенциала описывает взаимодействие различных по знаку или одинаковых по знаку зарядов или групп таких зарядов.
Из школьного курса физики и из повседневного опыта, мы знаем, что поднимаясь в гору, мы преодолеваем силу притяжения Земли и, тем самым, совершаем работу против сил притяжения, действующих в потенциальном гравитационном поле. Поскольку мы обладаем некоторой массой, Земля старается понизить наш потенциал — стащить нас вниз, что мы с удовольствием позволяем ей, стремительно катаясь на горных лыжах и сноубордах. Аналогично, электрическое потенциальное поле старается сблизить разноимённые заряды и оттолкнуть одноимённые.
Отсюда следует вывод, что каждое электрически заряженное тело старается понизить свой потенциал, приблизившись как можно ближе к мощному источнику электрического поля противоположного знака, если никакие силы этому не препятствуют. В случае одноимённых зарядов каждое электрически заряженное тело старается понизить свой потенциал, удалившись как можно дальше от мощного источника электрического поля одинакового знака, если никакие силы этому не препятствуют. А если они препятствуют, то потенциал не меняется — пока вы стоите на ровном месте на вершине горы, сила гравитационного притяжения Земли компенсируется реакцией опоры и вас ничто не тянет вниз, только ваш вес давит на лыжи. Но стоит только оттолкнуться…
Аналогично и поле, создаваемое каким-то зарядом, действует на любой заряд, создавая потенциал для его механического перемещения к себе или от себя в зависимости от знака заряда взаимодействующих тел.
«Сизиф», Тициан, Музей Прадо, Мадрид, Испания
Электрический потенциал
Заряд, внесённый в электрическое поле, обладает определенным запасом энергии, т. е. способностью совершать работу. Для характеристики энергии, запасённой в каждой точке электрического поля, и введено специальное понятие — электрический потенциал. Потенциал электрического поля в данной точке равен работе, которую могут совершить силы этого поля при перемещении единицы положительного заряда из этой точки за пределы поля.
Возвращаясь к аналогии с гравитационным полем, можно обнаружить, что понятие электрического потенциала сродни понятию уровня различных точек земной поверхности. То есть, как мы рассмотрим ниже, работа по поднятию тела над уровнем моря зависит от того, как высоко мы поднимаем это тело, и аналогично, работа по отдалению одного заряда от другого зависит от того, насколько далеко будут эти заряды.
Представим себе героя древнегреческого мира Сизифа. За его прегрешения в земной жизни боги приговорили Сизифа выполнять тяжёлую бессмысленную работу в загробной жизни, вкатывая огромный камень на вершину горы. Очевидно, что для подъема камня на половину горы, Сизифу нужно затратить вдвое меньшую работу, чем для подъема камня на вершину. Далее камень, волею богов, скатывался с горы, совершая при этом некоторую работу. Естественно, камень, поднятый на вершину горы высотой Н
(уровень Н), при спуске сможет совершить большую работу, чем камень, поднятый на уровень
Н
/2. Принято считать уровень моря нулевым уровнем, от которого и производится отсчет высоты.
По аналогии, электрический потенциал земной поверхности считается нулевым потенциалом, то есть
где ϕEarth — обозначение электрического потенциала Земли, являющегося скалярной величиной (ϕ — буква греческого алфавита и читается как «фи»).
Эта величина количественно характеризует способность поля совершить работу (W) по перемещению какого-то заряда (q) из данной точки поля в другую точку:
В системе СИ единицей измерения электрического потенциала является вольт (В).
Посетители Канадского музея науки и техники вращают большое беличье колесо, которое вращает генератор, питающий трансформатор Тесла (на рисунке справа), который, в свою очередь, создает высокое напряжение в несколько десятков тысяч вольт, достаточное для пробоя воздуха
Напряжение
Одно из определений электрического напряжения описывает его как разность электрических потенциалов, что определяется формулой:
Понятие напряжение ввёл немецкий физик Георг Ом
в работе 1827 года, в которой предлагалась гидродинамическая модель электрического тока для объяснения открытого им в 1826 г. эмпирического закона Ома:
Трансформатор Тесла в Канадском музее науки и техники
где V — это разность потенциалов, I — электрический ток, а R — сопротивление.
Другое определение электрического напряжения представляется как отношение работы поля по передвижению заряда в проводнике к величине заряда.
Для этого определения математическое выражение для напряжения описывается формулой:
Напряжение, как и электрический потенциал, измеряется в вольтах
(В) и его десятичных кратных и дольных единицах — микровольтах (миллионная доля вольта, мкВ), милливольтах (тысячная доля вольта, мВ), киловольтах (тысячах вольт, кВ) и мегавольтах (миллионах вольт, МВ).
Напряжением в 1 В считается напряжение электрического поля, совершающего работу в 1 Дж по перемещению заряда в 1 Кл. Размерность напряжения в системе СИ определяется как
Напряжение может создаваться различными источниками: биологическими объектами, техническими устройствами и даже процессами, происходящими в атмосфере.
Боковая линия акулы
Элементарной ячейкой любого биологического объекта является клетка, которая с точки зрения электричества представляет собой электрохимический генератор малого напряжения. Некоторые органы живых существ, вроде сердца, являющихся совокупностью клеток, вырабатывают более высокое напряжение. Любопытно, что самые совершенные хищники наших морей и океанов — акулы различных видов — обладают сверхчувствительным датчиком напряжения, называемым органом боковой линии
, и позволяющим им безошибочно обнаруживать свою добычу по биению сердца. Отдельно, пожалуй, стоит упомянуть об электрических скатах и угрях, выработавших в процессе эволюции для поражения добычи и отражения нападения на себя способность создавать напряжение свыше 1000 В!
Хотя люди генерировали электричество, и, тем самым, создавали разность потенциалов (напряжение) трением кусочка янтаря о шерсть с давних времён, исторически первым техническим генератором напряжения явился гальванический элемент
. Он был изобретён итальянским учёным и врачом
Луиджи Гальвани
, который обнаружил явление возникновения разности потенциалов при контакте разных видов металла и электролита. Дальнейшим развитием этой идеи занимался другой итальянский физик
Алессандро Вольта
. Вольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока. Соединив несколько таких источников последовательно, он создал химическую батарею, так называемый
«Вольтов столб»
, благодаря которой стало возможным получать электричество с помощью химических реакций.
Вольтов столб — копия, сделанная электриком из Музея Алессандро Вольта в Комо, Италия. Канадский музей науки и техники в Оттаве
Из-за заслуг в создания надёжных электрохимических источников напряжения, сослуживший немалую роль в деле дальнейших исследования электрофизических и электрохимических явлений, именем Вольта названа единица измерения электрического напряжения — Вольт.
Среди создателей генераторов напряжения необходимо отметить голландского физика Ван дер Граафа
, создавшего
генератор высокого напряжения
, в основе которого лежит древняя идея разделения зарядов с помощью трения — вспомним янтарь!
Отцами современных генераторов напряжения были два замечательных американских изобретателя — Томас Эдисон
и
Никола Тесла
. Последний был сотрудником в фирме Эдисона, но два гения электротехники разошлись во взглядах на способы генерации электрической энергии. В результате последующей патентной войны выиграло всё человечество — обратимые машины Эдисона нашли свою нишу в виде генераторов и двигателей постоянного тока, исчисляющихся миллиардами устройств — достаточно просто заглянуть под капот своего автомобиля или просто нажать кнопку стеклоподъёмника или включить блендер; а способы создания переменного напряжения в виде генераторов переменного тока, устройств для его преобразования в виде трансформаторов напряжения и линий передач на большие расстояния и бесчисленных устройств для его применения по праву принадлежат Тесле. Их число ничуть не уступает числу устройств Эдисона — на принципах Тесла работают вентиляторы, холодильники, кондиционеры и пылесосы, и масса других полезных устройств, описание которых выходит за рамки настоящей статьи.
Этот находящийся в Канадском музее науки и техники в Оттаве мотор-генератор, изготовленный компанией Westinghouse в 1904 г., использовался в качестве надежного источника питания для создания магнитного поля возбудителя на гидроэлектростанции в Ниагара-Фоллс, шт. Нью-Йорк. Строительством электростанции руководили Никола Тесла и Джордж Вестингауз
Безусловно, учёными позднее были созданы и другие генераторы напряжения на других принципах, в том числе и на использовании энергии ядерного распада. Они призваны служить источником электрической энергии для космических посланцев человечества в дальний космос.
Но самым мощным источником электрического напряжения на Земле, не считая отдельных научных установок, до сих пор остаются естественные атмосферные процессы.
Ежесекундно на Земле грохочут свыше 2 тысяч гроз, то есть, одновременно работают десятки тысяч естественных генераторов Ван дер Граафа, создавая напряжения в сотни киловольт, разряжаясь током в десятки килоампер в виде молний. Но, как ни удивительно, мощь земных генераторов не идёт ни в какое сравнение с мощью электрических бурь, происходящих на сестре Земли — Венере — не говоря уже об огромных планетах вроде Юпитера и Сатурна.
Характеристики напряжения
Напряжение характеризуется своей величиной и формой. Относительно его поведения с течением времени различают постоянное напряжение (не изменяющееся с течением времени), апериодическое напряжение (изменяющееся с течением времени) и переменное напряжение (изменяющееся с течением времени по определённому закону и, как правило, повторяющее само себя через определённый промежуток времени). Иногда для решения определённых целей требуется одновременное наличие постоянного и переменного напряжений. В таком случае говорят о напряжении переменного тока с постоянной составляющей.
Таким вольтметром измеряли напряжение в начале XX века. Канадский музей науки и техники в Оттаве
В электротехнике генераторы постоянного тока (динамо-машины) используются для создания относительно стабильного напряжения большой мощности, в электронике применяются прецизионные источники постоянного напряжения на электронных компонентах, которые называются стабилизаторами
Мощность электричества
Количество работы, совершаемой электрическим током за единицу времени, называется мощностью. Она преобразуется в различные виды энергий: механическую, тепловую и т. д. В цепях с постоянным и переменным токами она вычисляется различными способами. В большинстве случаев ее рассчитывать нет необходимости, поскольку она указывается на электрооборудовании (на корпусе и в документации). Расчет необходим только при проектировании устройств.
Основные соотношения
В цепи постоянного тока формула мощности записывается таким образом: P = I * U. Существуют и другие соотношения, получаемые из закона Ома (I = U / R):
- Для участка цепи: P = sqr (I) * R = sqr (U) / R.
- Для полной цепи (с учетом ЭДС — e) равенство записывается следующим образом: P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
- P = I * (e + (I * Rвн)).
Во втором случае формулу нужно применять при условии, что в цепи присутствует электрический двигатель или выполняется зарядка аккумулятора, т. е. происходит потребление электроэнергии. При наличии в электроцепи генератора или гальванического элемента, поскольку происходит отдача энергии, следует применять последнюю формулу. Эти соотношения невозможно применять для цепей, которые потребляют переменный ток. Основная причина — его характеристики, которые меняются с течением времени по определенному закону.
В физике существуют три вида мощностей, которые зависят от элементов: активная (резистор), реактивная (емкость и индуктивность) и полная. Активная мощность вычисляется при помощи следующей формулы: Pа = I * U * cos (a). В соотношении учитываются значения U и I, которые являются среднеквадратичными, а также косинус угла сдвига фаз между ними. Реактивная мощность находится аналогично, только вместо косинуса следует использовать синус: Qр = I * U * sin (a). При индуктивной нагрузке в цепи значение Qp>0, а при емкостной Qp Читайте также: Провод РКГМ: технические характеристики
Физический смысл ватта
Физический смысл ватта следующий: расход электроэнергии за определенное время. Следовательно, 1 Вт — расход 1 джоуля (Дж) электрической энергии за 1 секунду. Иными словами, киловаттный чайник потребляет 1000 Дж электрической энергии за единицу времени. Для удобства выполнения расчетов используются специальные приставки: милливатт (мВт, mwatt), киловатт (кВт или kwatt), мегаватт (МВт, Mwatt), гигаватт (ГВт, Gwatt) и т. д.
Ватт связан следующим равенством с другими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr (c)) = 1 Н * м / с = 746 л. с. Последнее значение является электрической лошадиной силой. Численные значения приставок можно найти в технических справочниках, а также в интернете. Например, 1 кВт равен 1000 Вт. Приставка «к» обозначает, что следует число, стоящее перед ней, умножить на 1000. Для того чтобы перевести 1 МВт, следует умножить число на значение приставки: 1 * 1000000 = 1000000 Вт = 1000 кВатт. Если необходимо перевести Вт в кВт, то нужно количество ватт разделить на 1000.
Для учета расхода количества электроэнергии принята единица, которая называется ватт-час (Втч). Величины Втч и Вт отличаются. Ватт — мощность, а Ватт-час расшифровывается, как количество электроэнергии, потребляемое за единицу времени. Очень важно правильно писать и расшифровывать последнюю величину Вт*ч (умножение, а не деление). Разницу между Вт и ВТч возможно определить и расчетным методом. Например, необходимо рассчитать потребление электроэнергии за 30 минут электроприбором мощностью 2,5 кВт. Порядок вычисления следующий:
- Следует перевести время в часы: 30/60 = 0,5 (ч).
- Выполнить расчет по формуле: Pч = P * t = 2,5 * 0,5 = 1,25 (киловатт-час пишется — кВт*ч).
Расшифровка результата вычисления значит, что за 30 минут прибор потребит 1,25 кВт*ч или 1250 Вт (1,25 * 1000 = 1250). Если нужно рассчитать количество потребляемой мощности лампой накаливания мощностью в 100 Вт за 20 часов, то нужно подставить значения в формулу: 100 * 20 = 2 кВт*ч.
Таким образом, мощность и количество потребляемой электрической энергии являются различными физическими величинами, которые довольно просто рассчитываются. Вычисления помогают определить количество электроэнергии и помогают в экономии денежных средств.
Измерение напряжения
Измерение величины напряжения играет большую роль в фундаментальных физике и химии, прикладных электротехнике и электрохимии, электронике и медицине и во многих других отраслях науки и техники. Пожалуй, трудно найти отрасли человеческой деятельности, исключая творческие направления вроде архитектуры, музыки или живописи, где с помощью измерения напряжения не осуществлялся бы контроль над происходящими процессами с помощью разного рода датчиков, являющимися по сути дела преобразователями физических величин в напряжение. Хотя стоит заметить, что в наше время и эти виды человеческой деятельности не обходятся без электричества вообще и без напряжения в частности. Художники используют планшеты, в которых измеряется напряжение емкостных датчиков, когда над ними перемещается перо. Композиторы играют на электронных инструментах, в которых измеряется напряжение на датчиках клавиш и в зависимости от него определяется насколько сильно нажата та или иная клавиша. Архитекторы используют AutoCAD и планшеты, в которых тоже измеряется напряжение, которые преобразуется в числовую форму и обрабатывается компьютером.
В кухонном термометре (слева) температура мяса определяется с помощью измерения напряжения на резистивном датчике температуры, через который пропускают небольшой ток. В мультиметре (справа) температура определяется путем измерения напряжения непосредственно на термопаре
Измеряемые величины напряжения могут меняться в широких пределах: от долей микровольта при исследованиях биологических процессов, до сотен вольт в бытовых и промышленных устройствах и приборах и до десятков миллионов вольт в сверхмощных ускорителях элементарных частиц. Измерение напряжения позволяет нам контролировать состояние отдельных органов человеческого организма при помощи снятия энцефалограмм
мозговой деятельности.
Электрокардиограммы
и
эхокардиограммы
дают информацию о состоянии сердечной мышцы. При помощи различных промышленных датчиков мы успешно, а, главное, безопасно, контролируем процессы химических производств, порой происходящие при запредельных давлениях и температурах. И даже ядерные процессы атомных станций поддаются контролю с помощью измерения напряжений. С помощью измерения напряжения инженеры контролируют состояние мостов, зданий и сооружений и даже противостоят такой грозной природной силе как землетрясения.
Пульсоксиметр, как и вольтметр, измеряет напряжение на выходе устройства, усиливающего сигнал с фотодиода или фототранзистора. Однако, в отличие от вольтметра, здесь на дисплее мы видим не значение напряжения в вольтах, а процент насыщения гемоглобина кислородом (97%).
Блестящая идея связать различные значения уровней напряжения со значениями состояния единиц информации дало толчок к созданию современных цифровых устройств и технологий. В вычислительной технике низкий уровень напряжения трактуется как логический нуль (0), а высокий уровень напряжения — как логическая единица (1).
По сути дела, все современные устройства вычислительной техники являются в той или иной степени компараторами (измерителями) напряжения, преобразовывая свои входные состояния по определённым алгоритмам в выходные сигналы.
Помимо всего прочего, точные измерения напряжения лежат в основе многих современных стандартов, выполнение которых гарантирует их абсолютное соблюдение и, тем самым, безопасность применения.
Плата памяти, используемая в персональных компьютера, содержит десятки тысяч логических вентилей
Как измерить напряжение мультиметром
Начнем с основ. Любым прибором и в любом случае вольтметр подключается параллельно элементу, на котором измеряют напряжение. Любой мультиметр в режиме измерения напряжения – это вольтметр. Последовательно подключают только амперметр при измерении силы тока.
В дешевых мультиметрах (и во многих дорогих) есть 3 или 4 разъёма для подключения щупов, обычно это:
- COM – общий, обычно черного цвета и в него всегда вставляют щуп (соответственно тоже черный);
- VΩmA – для измерения напряжения, сопротивления, проверки диодов и или тока малой величины (до 200 мА), обычно красного цвета;
- 10А (20А) – для измерения тока большой величины.
На рисунке ниже вы видите самую распространенную модель китайского мультиметра (DT-830 или просто «830-й»). Стрелками показаны разъёмы для подключения щупов, а зеленым цветом выделен разъём, в который нужно вставить красный щуп если вы хотите измерить напряжение.
Для того, чтобы измерить напряжение в цепи, необходимо произвести несколько манипуляций с прибором. Для начала нужно определится с видом напряжения: постоянное (DC или знак =) или переменное (AC или знак
), и установить переключатель в нужное положение.
Далее выставить тем же переключателем предел измерения. Если на приборе он меньше, чем измеряемая величина то провести измерение не получится.
Поэтому первое измерение производят с максимального предела, постепенно снижая его до получения значения нужной размерности. Например, если вы не знаете какое напряжение в цепи, ставьте максимальный предел, на приведенном фото — 1000 Вольт, проведите измерение, если на экране показало «12 Вольт», то снизьте предел до 20В, чтобы узнать точное значение до десятых или сотых долей.
Некоторые устройства автоматически определяют предел и вид напряжения, поэтому переключение не требуется.
Подключение прибора в цепь производится с помощью щупов: один (красный) к плюсу (или фазе), второй (черный) к минусу (или нулю). Если щупы подключены в обратной последовательности — черный к плюсу, а красный к минусу, то значение на дисплее будет с минусом.
Средства измерения напряжения
В ходе изучения и познания окружающего мира, способы и средства измерения напряжения значительно эволюционировали от примитивных органолептических методов
— русский учёный Петров срезал часть эпителия на пальцах, чтобы повысить чувствительность к действию электрического тока — до простейших индикаторов напряжения и современных приборов разнообразных конструкций на основе электродинамических и электрических свойств различных веществ.
Вкус электричества. Когда-то, очень давно, если не было вольтметра, мы определяли напряжение языком!
К слову сказать, начинающие радиолюбители легко отличали «рабочую» плоскую батарейку на 4,5 В от «подсевшей» без каких-либо приборов по причине их полного отсутствия, просто лизнув её электроды. Протекавшие при этом электрохимические процессы давали ощущение определённого вкуса и лёгкого жжения. Отдельные выдающиеся личности брались определять таким способом пригодность батареек даже на 9 В, что требовало немалой выдержки и мужества!
Примером простейшего индикатора — пробника сетевого напряжения — может служить обыкновенная лампа накаливания с рабочим напряжением не ниже напряжения сети. В продаже имеются простые пробники напряжения на неоновых лампах и светодиодах, потребляющие малые токи. Осторожно, использование самодельных конструкций может быть опасным для Вашей жизни!
Необходимо отметить, что приборы для измерения напряжения (вольтметры) весьма отличаются друг от друга в первую очередь по типу измеряемого напряжения — это могут быть приборы постоянного или переменного тока. Вообще, в измерительной практике важно поведение измеряемого напряжения — оно может быть функцией времени и иметь различную форму — быть постоянным, гармоническим, негармоническим, импульсным и так далее, и его величиной принято характеризовать режимы работ электротехнических цепей и устройств (слаботочные и силовые).
Различают следующие значения напряжения:
Мгновенное значение напряжения Ui (см. рисунок) — это значение напряжения в определенный момент времени. Его можно наблюдать на экране осциллографа и определять для каждого момента времени по осциллограмме.
Амплитудное (пиковое) значение напряжения Ua — это наибольшее мгновенное значение напряжения за период. Размах напряжения Up-p — величина, равная разности между наибольшим и наименьшим значениями напряжения за период.
Среднее квадратичное (действующее) значение напряжения Urms определяется как корень квадратный из среднего за период квадрата мгновенных значений напряжения.
Все стрелочные и цифровые вольтметры обычно градуируются в среднеквадратических значениях напряжения.
Среднее значение (постоянная составляющая) напряжения — это среднее арифметическое всех его мгновенных значений за время измерения.
Средневыпрямленное напряжение определяется как среднее арифметическое абсолютных мгновенных значений за период.
Разность между максимальным и минимальным значениями напряжения сигнала называют размахом сигнала.
Сейчас, в основном, для измерения напряжения используются как многофункциональные цифровые приборы, так и осциллографы — на их экранах отображается не только форма напряжения, но и существенные характеристики сигнала. К таким характеристикам относится и частота изменения периодических сигналов, поэтому в технике измерений важен частотный предел измерений прибора.
Шкала напряжений
- Наименьшее измеряемое напряжение — порядка 10 нВ.[источник не указан 2395 дней
] - Чувствительность связной аппаратуры при работе голосом — 1…1,5 мкВ (одни из самых слабых сигналов, массово применяемых в настоящее время)[источник не указан 2395 дней
] - Выходное напряжение на обмотке магнитной головки кассетного магнитофона — 0,3 мВ[6].
- Разность потенциалов на мембране нейрона — 70 мВ.
- NiCd аккумулятор — 1,2 В.
- Щелочной элемент — 1,5 В.
- Литий-железо-фосфатный аккумулятор (LiFePO4) — 3,3 В.
- Зарядное устройство для мобильных телефонов — 5.0 В.
- Батарейка «Крона» — 9 В.
- Автомобильный аккумулятор — 12 В (для тяжёлых грузовиков — 24 В).
- Напряжение бытовой сети в России — 230 В (фаза-нейтраль), 400 В (межфазное)[7].
- Напряжение в некоторых промышленных сетях — 400 В (трёхфазное), 400 В (однофазное), 690 В (трёхфазное)
- Напряжение в контактной сети трамвая, троллейбуса — 600 В (660 В) (постоянный ток).
- Напряжение контактного рельса в метрополитене — 825 В (постоянный ток)[источник не указан 2382 дня
]. - Электрифицированные железные дороги — 3 кВ (контактная сеть постоянного тока), 25 кВ (контактная сеть переменного тока).
- Магистральные ЛЭП — 110, 220, 330, 500, 750 и 1150 кВ.
- Самое высокое постоянное напряжение, полученное в лаборатории на пеллетроне — 25 МВ.
- Молния — от 100 МВ и выше.
Измерение напряжения осциллографом
Иллюстрацией к вышесказанному будет серия опытов по измерению напряжений с использованием генератора сигналов, источника постоянного напряжения, осциллографа и многофункционального цифрового прибора (мультиметра).
Эксперимент №1
Общая схема эксперимента №1 представлена ниже:
Генератор сигналов нагружен на сопротивление нагрузки R1 в 1 кОм, параллельно сопротивлению подключены измерительные концы осциллографа и мультиметра. При проведении опытов учтём то обстоятельство, что рабочая частота осциллографа значительно выше рабочей частоты мультиметра.
Подадим на сопротивление нагрузки сигнал синусоидальной формы с генератора частотой 60 герц и амплитудой 4 вольт. На экране осциллографа будем наблюдать изображение, показанное ниже. Отметим, что цена деления масштабной сетки экрана осциллографа по вертикальной оси 2 В. Мультиметр и осциллограф при этом покажут среднеквадратичное значение напряжение 1,36 В.
Увеличим сигнал от генератора вдвое, размах изображения на осциллографе возрастёт ровно вдвое и мультиметр покажет удвоенное значение напряжения:
Увеличим частоту генератора в 100 раз (6 кГц), при этом частота сигнала на осциллографе изменится, но размах и среднеквадратичное значение останутся прежними, а показания мультиметра станут неправильными — сказывается допустимый рабочий частотный диапазон мультиметра 0—400 Гц:
Вернёмся к исходной частоте 60 Гц и напряжению генератора сигналов 4 В, но изменим форму его сигнала с синусоидальной на треугольную. Размах изображения на осциллографе остался прежним, а показания мультиметра уменьшились по сравнению со значением напряжения, которое он показывал в опыте №1, так как изменилось действующее напряжение сигнала:
Эксперимент №2
Схема эксперимента №2, аналогична схеме эксперимента 1.
Ручкой изменения напряжения смещения на генераторе сигналов добавим смещение 1 В. На генераторе сигналов установим синусоидальное напряжение с размахом 4 В с частотой 60 Гц — как и в эксперименте №1. Сигнал на осциллографе поднимется на половину большого деления, а мультиметр покажет среднеквадратичное значение 1,33 В. Осциллограф покажет изображение, подобное изображению из опыта 1 эксперимента №1, но поднятое половину большого деления. Мультиметр покажет почти такое же напряжение, как было в опыте 1 эксперимента №1, так как у него закрытый вход, а осциллограф с открытым входом покажет увеличенное действующее значение суммы постоянного и переменного напряжений, которое больше действующего значения напряжения без постоянной составляющей:
Техника безопасности при измерении напряжения
Поскольку в зависимости от класса безопасности помещения и его состояния даже относительно невысокие напряжения уровня 12–36 В могут представлять опасность для жизни, необходимо выполнять следующие правила:
- Не проводить измерения напряжения, требующих определённых профессиональных навыков (свыше 1000 В).
- Не производить измерения напряжений в труднодоступных местах или на высоте.
- При измерении напряжений в бытовой сети применять специальные средства защиты от поражения электрическим током (резиновые перчатки, коврики, сапоги или боты).
- Пользоваться исправным измерительным инструментом.
- В случае использования многофункциональных приборов (мультиметров), следить за правильной установкой измеряемого параметра и его величины перед измерением.
- Пользоваться измерительным прибором с исправными щупами.
- Строго следовать рекомендациям производителя по использованию измерительного прибора.
Автор статьи: Сергей Акишкин
Эволюция напряжения в сети – с чего все началось
Уровень стандартных напряжений за последние 100 лет постоянно изменялся, для отечественных бытовых сетей в зависимости от степени технологического развития. Так, на заре электрификации стран советского лагеря для потребителей электрической энергии устанавливался номинал на 127 В. Такая система номинальных параметров вошла в обиход благодаря разработкам Доливо-Добровольского, который и предложил трехфазную генерацию вместо устаревшей двухфазной. Следует отметить, что еще в конце 30-х годов прошлого века норма напряжения 127 В уже слабо соответствовала возросшим производственным нуждам, именно тогда возникли первые попытки заменить ее, но с началом Второй мировой войны эти планы так и не реализовались.
Но уже в 60-х годах начались масштабные работы по приведению номинального напряжения к новому стандарту 220/380 В вместо переменного трехфазного 127/220 В. Европейские сети, к тому моменту уже совершили массовый переход на новые номиналы, дабы избежать необоснованно затратной замены проводов на большее сечение. В попытке не уступать в эффективности советские страны также начали переход, который планировалось закончить за ближайшую пятилетку. Происходило строительство новых электростанций, замена трансформаторов и силовых агрегатов, но процесс перехода на нормы в 220 В фазного напряжения для бытовых потребителей затянулся до 80-х годов.
Рис. 1. Номинал на розетке
В 1992 году ГОСТ 29322-92 (МЭК 38-83) ввел новые нормы напряжения: 230 В фазного вместо 220 В и 400 В линейного вместо привычных 380 В.
Такой шаг преследовал стремление вывести собственную энергетическую систему в один ряд с зарубежными для:
- удобства работы с ближайшими соседями;
- возможности беспрепятственного выхода на мировые рынки;
- упрощения процедуры транзита.
Но, из-за несовершенства всей отечественной системы электроснабжения и отсутствия средств для полномасштабной реконструкции, эти нормы напряжения не установились и по сей день.